scholarly journals Nuclear Medicine in Times of COVID-19: How Radiopharmaceuticals Could Help to Fight the Current and Future Pandemics

Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1247
Author(s):  
Felix Neumaier ◽  
Boris D. Zlatopolskiy ◽  
Bernd Neumaier

The emergence and global spread of COVID-19, an infectious disease caused by the novel coronavirus SARS-CoV-2, has resulted in a continuing pandemic threat to global health. Nuclear medicine techniques can be used for functional imaging of (patho)physiological processes at the cellular or molecular level and for treatment approaches based on targeted delivery of therapeutic radionuclides. Ongoing development of radiolabeling methods has significantly improved the accessibility of radiopharmaceuticals for in vivo molecular imaging or targeted radionuclide therapy, but their use for biosafety threats such as SARS-CoV-2 is restricted by the contagious nature of these agents. Here, we highlight several potential uses of nuclear medicine in the context of SARS-CoV-2 and COVID-19, many of which could also be performed in laboratories without dedicated containment measures. In addition, we provide a broad overview of experimental or repurposed SARS-CoV-2-targeting drugs and describe how radiolabeled analogs of these compounds could facilitate antiviral drug development and translation to the clinic, reduce the incidence of late-stage failures and possibly provide the basis for radionuclide-based treatment strategies. Based on the continuing threat by emerging coronaviruses and other pathogens, it is anticipated that these applications of nuclear medicine will become a more important part of future antiviral drug development and treatment.

Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Harshita Gupta

Abstract:: This review summarizes the outbreak of viruses causing the fatal disease which is highly pathogenic and human to human transmittable and it first emerges in Wuhan, China and now this epidemic situation becomes worldwide. A novel coronavirus (2019-nCoV) or severe acute respiratory syndrome coronavirus(SARS-CoV)-2 belongs to β-coronavirus genera which were originated in bats due to highly identical genome with bat coronavirus. This review highlights the Indian Council of Medical Research, India study which determined the detection of pathogenic coronavirus in two species of Indian bats. Indian Council of Medical Research, India has successfully isolated the COVID-19 virus strain which was the first step towards diagnosis and the development of vaccines in the country. The outbreaks of coronavirus received worldwide attention for overcoming the challenges faced during this current pandemic as there is no clinically approved antiviral drug or vaccine available, however, preventive measures and different treatments were taken to cope with this viral outbreak. In response to this global outbreak, this review tries to explain the Virology, Epidemiology, pathogenesis, and discusses the Diagnosis, treatment strategies of COVID-19. This review emphasizes the current update of knowledge about COVID-19.


Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Manish Kumar ◽  
Chandra Prakash Jain

Background: An outbreak of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection or COVID 19, causing serious threats to all around the world. Until an effective and safe vaccine for novel coronavirus is developed by scientists, current drug therapy should by optimize for the control and treatment of COVID 19. Objective: In this manuscript, we are presenting a perspective on possible benefits of reformulating antiviral drug dosage form with nanoemulsion system against novel coronavirus infection. Methods: Literature review has been done on COVID 19, treatment strategies, novel drug delivery systems and role of pulmonary surfactant on lungs protection. Results: Nanoemulsion system and its components have certain biophysical properties which could increase the efficacy of drug therapy. Antiviral drugs, delivered through a nanoemulsion system containing P-gp inhibitor (surfactant and cosolvent), can inhibit the cellular resistance to drugs and would potentiate the antiviral action of drugs. Pulmonary surfactant (PS) assisted antiviral drug delivery by nanoemulsion system could be another effective approach for the treatment of COVID 19. Use of functional excipients like pulmonary surfactant (PS) and surfactant proteins (SPs), in the formulation of the antiviral drug-loaded nanoemulsion system can improve the treatment of coronavirus infection. Conclusion: In our opinion for synergizing antiviral action, lipid and protein portion of PS and their commercial analogs should be explored by pharmaceutical scientists to use them as a functional excipient in the formulation of antiviral drugloaded nanoemulsion system.


2021 ◽  
Author(s):  
Aisyah Elliyanti

Nuclear medicine plays a role in oncology. It uses tracers (radiopharmaceuticals) to study physiological processes and treat diseases. The radiopharmaceuticals can be formed as radionuclides alone or radionuclides labeled with other molecules as a drug, a protein, or a peptide. The radiopharmaceutical is introduced into the body and accumulates in the target tissue of interest for therapy or imaging purposes. It offers to study cancer biology in vivo to optimize cancer therapy. Another advantage of radiopharmaceutical therapy is a tumor-targeting agent that deposits lethal radiation at tumor sites. This review outlines radiopharmaceuticals agents in current cancer therapy.


2020 ◽  
Vol 10 (6) ◽  
pp. 7278-7283

Novel coronavirus disease (COVID-19) broke out in Wuhan, China, and has spread throughout the country, affecting many countries around the world. Because there is no etiological treatment for COVID-19, it is very urgent to find effective antiviral drugs to control the rapid spread of this disease. Remdesivir is a nucleotide prodrug that has broad-spectrum antiviral activity. It can interfere with viral RNA synthesis and play an antiviral role. This article reviews the pharmacological effects of remdesivir, some animal trials, in vitro and in vivo experiments, and clinical trials.


Author(s):  
V. Mohan ◽  
N. M. Bruin ◽  
J. B. van de Kamer ◽  
J.-J. Sonke ◽  
Wouter V. Vogel

AbstractRadiation therapy is an effective treatment modality for a variety of cancers. Despite several advances in delivery techniques, its main drawback remains the deposition of dose in normal tissues which can result in toxicity. Common practices of evaluating toxicity, using questionnaires and grading systems, provide little underlying information beyond subjective scores, and this can limit further optimization of treatment strategies. Nuclear medicine imaging techniques can be utilised to directly measure regional baseline function and function loss from internal/external radiation therapy within normal tissues in an in vivo setting with high spatial resolution. This can be correlated with dose delivered by radiotherapy techniques to establish objective dose-effect relationships, and can also be used in the treatment planning step to spare normal tissues more efficiently. Toxicity in radionuclide therapy typically occurs due to undesired off-target uptake in normal tissues. Molecular imaging using diagnostic analogues of therapeutic radionuclides can be used to test various interventional protective strategies that can potentially reduce this normal tissue uptake without compromising tumour uptake. We provide an overview of the existing literature on these applications of nuclear medicine imaging in diverse normal tissue types utilising various tracers, and discuss its future potential.


1982 ◽  
Vol 21 (03) ◽  
pp. 85-91 ◽  
Author(s):  
R. Poppitz

Um die Strahlenexposition und das Strahlenrisiko für die Bevölkerung durch die nuklearmedizinische Diagnostik in Bulgarien zu ermitteln, wurde eine Erhebung für das Jahr 1980 über die Arten und Anzahl der Applikationen von Radiopharmaka, über die verwendeten Aktivitäten und über die Geschlechts- und Altersverteilung der untersuchten Patienten durchgeführt. Die Gesamtzahl diagnostischer in vivo Applikationen betrug 116418 (davon 40,5% bei Männern und 59,5% bei Frauen), d.h. 13,1 Applikationen per 1000 Einwohner. Die applizierte Gesamtaktivität aller 44 verwendeter Radiopharmaka betrug ca. 2,1 TBq (56 Ci). Die Geschlechts- und Altersverteilung der untersuchten Patienten war ähnlich jener in anderen Ländern: nur 17,4% aller Patienten waren im reproduktionsfähigen Alter, 52,7% waren über 45 Jahre alt. Im Vergleich zu anderen entwickelten Ländern war in Bulgarien im Jahr 1980 der Anteil der 131J-Jodid-Untersuchungen verhältnismäßig hoch.


2001 ◽  
Vol 40 (03) ◽  
pp. 59-70 ◽  
Author(s):  
W. Becker ◽  
J. Meiler

SummaryFever of unknown origin (FUO) in immunocompetent and non neutropenic patients is defined as recurrent fever of 38,3° C or greater, lasting 2-3 weeks or longer, and undiagnosed after 1 week of appropriate evaluation. The underlying diseases of FUO are numerous and infection accounts for only 20-40% of them. The majority of FUO-patients have autoimmunity and collagen vascular disease and neoplasm, which are responsible for about 50-60% of all cases. In this respect FOU in its classical definition is clearly separated from postoperative and neutropenic fever where inflammation and infection are more common. Although methods that use in-vitro or in-vivo labeled white blood cells (WBCs) have a high diagnostic accuracy in the detection and exclusion of granulocytic pathology, they are only of limited value in FUO-patients in establishing the final diagnosis due to the low prevalence of purulent processes in this collective. WBCs are more suited in evaluation of the focus in occult sepsis. Ga-67 citrate is the only commercially available gamma emitter which images acute, chronic, granulomatous and autoimmune inflammation and also various malignant diseases. Therefore Ga-67 citrate is currently considered to be the tracer of choice in the diagnostic work-up of FUO. The number of Ga-67-scans contributing to the final diagnosis was found to be higher outside Germany than it has been reported for labeled WBCs. F-l 8-2’-deoxy-2-fluoro-D-glucose (FDG) has been used extensively for tumor imaging with PET. Inflammatory processes accumulate the tracer by similar mechanisms. First results of FDG imaging demonstrated, that FDG may be superior to other nuclear medicine imaging modalities which may be explained by the preferable tracer kinetics of the small F-l 8-FDG molecule and by a better spatial resolution of coincidence imaging in comparison to a conventional gamma camera.


1986 ◽  
Vol 56 (01) ◽  
pp. 023-027 ◽  
Author(s):  
C J Jen ◽  
L V McIntire

SummaryWhether platelet microtubules are involved in clot retraction/ contraction has been controversial. To address this question we have simultaneously measured two clotting parameters, clot structural rigidity and isometric contractile force, using a rheological technique. For recalcified PRP clots these two parameters began rising together at about 15 min after CaCl2 addition. In the concentration range affecting microtubule organization in platelets, colchicine, vinca alkaloids and taxol demonstrated insignificant effects on both clotting parameters of a recalcified PRP clot. For PRP clots induced by adding small amounts of exogenous thrombin, the kinetic curves of clot rigidity were biphasic and without a lag time. The first phase corresponded to a platelet-independent network forming process, while the second phase corresponded to a platelet-dependent process. These PRP clots began generating contractile force at the onset of the second phase. For both rigidity and force parameters, only the second phase of clotting kinetics was retarded by microtubule affecting reagents. When PRP samples were clotted by adding a mixture of CaCl2 and thrombin, the second phase clotting was accelerated and became superimposed on the first phase. The inhibitory effects of micro tubule affecting reagents became less pronounced. Thrombin clotting of a two-component system (washed platelets/ purified fibrinogen) was also biphasic, with the second phase being microtubule-dependent. In conclusion, platelet microtubules are important in PRP clotted with low concentrations of thrombin, during which fibrin network formation precedes platelet-fibrin interactions. On the other hand they are unimportant if a PRP clot is induced by recalcification, during which the fibrin network is constructed in the presence of platelet-fibrin interactions. The latter is likely to be more analogous to physiological processes in vivo.


Sign in / Sign up

Export Citation Format

Share Document