scholarly journals Co-Spray Dried Nafamostat Mesylate with Lecithin and Mannitol as Respirable Microparticles for Targeted Pulmonary Delivery: Pharmacokinetics and Lung Distribution in Rats

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1519
Author(s):  
Ji-Hyun Kang ◽  
Young-Jin Kim ◽  
Min-Seok Yang ◽  
Dae Hwan Shin ◽  
Dong-Wook Kim ◽  
...  

Coronavirus disease 2019 (COVID-19), caused by a new strain of coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is spreading rapidly worldwide. Nafamostat mesylate (NFM) suppresses transmembrane serine protease 2 and SARS-CoV-2 S protein-mediated fusion. In this study, pharmacokinetics and lung distribution of NFM, administered via intravenous and intratracheal routes, were determined using high performance liquid chromatography analysis of blood plasma, lung lumen using bronchoalveolar lavage fluid, and lung tissue. Intratracheal administration had higher drug delivery and longer residual time in the lung lumen and tissue, which are the main sites of action, than intravenous administration. We confirmed the effect of lecithin as a stabilizer through an ex vivo stability test. Lecithin acts as an inhibitor of carboxylesterase and delays NFM decomposition. We prepared inhalable microparticles with NFM, lecithin, and mannitol via the co-spray method. The formulation prepared using an NFM:lecithin:mannitol ratio of 1:1:100 had a small particle size and excellent aerodynamic performance. Spray dried microparticles containing NFM, lecithin, and mannitol (1:1:100) had the longest residual time in the lung tissue. In conclusion, NFM-inhalable microparticles were prepared and confirmed to be delivered into the respiratory tract, such as lung lumen and lung tissue, through in vitro and in vivo evaluations.

2021 ◽  
Author(s):  
Yipu Wang ◽  
Dong Mei ◽  
Xinyi Zhang ◽  
Da-Hui Qu ◽  
Ju Mei ◽  
...  

With increase of social aging, Alzheimer's disease (AD) has been one of the serious diseases threatening human health. The occurrence of A<i>β </i>fibrils<i> </i>or plaques is recognized as the hallmark of AD.<i> </i>Currently, optical imaging has stood out to be a promising technique for the imaging of A<i>β</i> fibrils/plaques and the diagnosis of AD. However, restricted by their poor blood-brain barrier (BBB) penetrability, short-wavelength excitation and emission, and aggregation-caused quenching (ACQ) effect, the clinically used gold-standard optical probes such as <a>thioflavin</a> T (ThT) and thioflavin S (ThS), are not effective enough in the early diagnosis of AD <i>in vivo</i>. Herein, we put forward an “all-in-one” design principle and demonstrate its feasibility in developing high-performance fluorescent probes which are specific to A<i>β</i> fibrils/plaques and promising for super-early <i>in</i>-<i>vivo</i> diagnosis of AD. As a proof of concept, a simple rod-like amphiphilic NIR fluorescent AIEgen, i.e., AIE-CNPy-AD, is developed by taking the specificity, BBB penetration ability, deep-tissue penetration capacity, high signal-to-noise ratio (SNR) into consideration. AIE-CNPy-AD is constituted by connecting the electron-donating and accepting moieties through single bonds and tagging with a propanesulfonate tail, giving rise to the NIR fluorescence, aggregation-induced emission (AIE) effect, amphiphilicity, and rod-like structure, which in turn result in high binding-affinity and excellent specificity to A<i>β</i> fibrils/plaques, satisfactory ability to penetrate BBB and deep tissues, ultrahigh SNR and sensitivity, and high-fidelity imaging capability. <i>In-vitro, ex-vivo,</i> and <i>in-vivo</i> <a>identifying of A<i>β</i> fibrils/plaques</a> in different strains of mice indicate that AIE-CNPy-AD holds the universality to the detection of A<i>β</i> fibrils/plaques. It is noteworthy that AIE-CNPy-AD is even able to trace the small and sparsely distributed A<i>β</i> fibrils/plaques in very young AD model mice such as 4-month-old APP/PS1 mice which are reported to be the youngest mice to have A<i>β</i> deposits in brains, suggesting its great potential in diagnosis and intervention of AD at a super-early stage.


2021 ◽  
Author(s):  
Farhad Safari ◽  
Shahla Mirzaeei ◽  
Ghobad Mohammadi

Purpose: The present investigation aimed to prepare Vancomycin-loaded nanoparticles (VAN-NPs) using chitosan (CS) and tripolyphosphate (TPP) besides exploring the effects of changing CS/TPP ratio on the physicochemical properties, corneal permeation, and ocular delivery of the prepared NPs. Methods: Different pre-formulations were prepared using the modified ionic gelation process, then were characterized in terms of size distribution. Optimized formulations were furtherly evaluated by some characteristic tools such as Fourier-transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The in vitro antimicrobial efficacy and drug release amounts along with the Ex-vivo corneal permeation of NPs through the sheep cornea were investigated. Quantification was performed using High-Performance Liquid Chromatography. Results: Spherical and uniformly distributed NPs were developed with a mean particle size varied between 215–290 nm. FTIR spectroscopy confirmed that the CS/TPP cross-linking has taken place without affecting the pharmacologically active moiety of the drug. The obtained zeta potential values were in the range of +34 to +37 mV, which could ensure the stability of formulations. TGA analysis indicated enhanced thermal stability for the encapsulated drug compared to the plain drug. Formulations indicated suitable antimicrobial efficacy while releasing more than 90% of the drug during 24 h. NPs offered a 10-fold enhancement in corneal permeation compared to the drug solution. Conclusions: Although further in vivo evaluation is still required to completely confirm the efficacy of the formulations, the enhanced release and corneal permeation of the drug suggest that the prepared NPs are suitable for ocular delivery of VAN.


2020 ◽  
Vol 13 ◽  
Author(s):  
Harpal Kaur ◽  
Neeraj Mishra ◽  
Bharat Khurana ◽  
Sukhbir Kaur ◽  
Daisy Arora

Background: The existing parenteral treatment of cervical cancer has high toxicity and poor distribution of drugs at the targeted site. Purpose: To formulate localized mucoadhesive cisplatin loaded microparticles based formulation to treat cervical cancer so that enhanced therapeutics benefits with low toxicity could be achieved. Methods: Cisplatin loaded chitosan coated spray-dried microparticles were prepared by ionotropic gelation technique and optimized by Central Composite Design. The spray-dried uncoated and chitosan-coated microparticles were characterized for various parameters (Particle size, Morphology, Drug entrapment efficiency). In vitro drug release study was carried out in simulated vaginal fluids by dialysis membrane method. Ex vivo studies were carried out to evaluate the cytotoxic potential of the developed formulation by MTT assay. A drug permeability study was done by Franz diffusion cell using the vaginal tissue of Swiss Albino Mice. Results: All in vitro characterization parameters were found to be optimum. The In vitro release studies indicated a controlled release following the Higuchi model. The chitosan-coated microparticles were found to be more cytotoxic than uncoated microparticles and plain cisplatin solution. The chitosan-coated microparticles were found to be more permeable than uncoated microparticles. Finally, in vivo tumor regression and histopathological studies confirmed the significant decrease in tumor volume at different time intervals. Conclusion: Thus it can be concluded that mucoadhesive spray-dried microparticles could provide a favorable approach for localized delivery of the anticancer drug via vaginal route against cervical cancer with its enhanced effectiveness.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1876-1876
Author(s):  
Jawed Fareed ◽  
D. Hoppensteadt ◽  
W. Haque ◽  
J. Diakur ◽  
W. Jeske ◽  
...  

Abstract Background: The pathogenesis of thrombosis involves both cellular and humoral processes. Most antithrombotic drugs exhibit either anti-protease or anti-platelet effects. A combination of anti-protease and anti-platelet drugs provides better efficacy in the management of thrombotic disorders. A series of synthetic low molecular weight serine protease inhibitors with varying anti-platelet effects (Medicure Inc.) are being assessed for antithrombotic properties. Materials and Methods: This investigation reports on a compound with low antithrombin/high anti-platelet activity MC 45301 (A) and a compound with high antithrombin/low anti-platelet activity MC 45308 (B) activity in in-vitro and in-vivo settings used to profile antithrombotic drugs. Results: A exhibited strong anti-platelet actions as measured using ADP as an agonist (IC50=1.1 g/ml), whereas B had a higher IC50 (9.4 g/ml). In the antithrombin titration assay A (>100 μg/ml) showed a relatively higher IC50 than B (45 μg/ml). In the global anticoagulant assays, A exhibited somewhat weaker effects than B. In the Xa generation assay, both compounds exhibited similar effects. However, in the thrombin generation assays B exhibited stronger effects. In whole blood assays both compounds produced anticoagulant and anti-platelet effects. Intravenous administration of these compounds to rabbits over a dose range of 50–500 g/kg produced strong dose dependent antithrombotic actions. In comparison to direct antithrombin agents such as argatroban, at a comparable dose, B produced identical antithrombotic actions, which were disproportional to the systemic anticoagulant effects. A produced modest antithrombotic actions with minimal ex vivo clotting effects. This data is highly suggestive that compounds with dual targets are able to produce stronger antithrombotic actions relative to monotherapeutic agents. Additional studies in arterial thrombosis may provide newer insights into the antithrombotic actions of compounds with dual sites of action. Moreover, these agents may be more effective in thrombotic conditions where both platelets and the coagulation system are involved.


2018 ◽  
Vol 314 (5) ◽  
pp. L708-L723 ◽  
Author(s):  
Gerald Burgstaller ◽  
Arunima Sengupta ◽  
Sarah Vierkotten ◽  
Gerhard Preissler ◽  
Michael Lindner ◽  
...  

Cues from the extracellular matrix (ECM) and their functional interplay with cells play pivotal roles for development, tissue repair, and disease. However, the precise nature of this interplay remains elusive. We used an innovative 3D cell culture ECM model by decellularizing 300-µm-thick ex vivo lung tissue scaffolds (d3D-LTCs) derived from diseased and healthy mouse lungs, which widely mimics the native (patho)physiological in vivo ECM microenvironment. We successfully repopulated all d3D-LTCs with primary human and murine fibroblasts, and moreover, we demonstrated that the cells also populated the innermost core regions of the d3D-LTCs in a real 3D fashion. The engrafted fibroblasts revealed a striking functional plasticity, depending on their localization in distinct ECM niches of the d3D-LTCs, affecting the cells’ tissue engraftment, cellular migration rates, cell morphologies, and protein expression and phosphorylation levels. Surprisingly, we also observed fibroblasts that were homing to the lung scaffold’s interstitium as well as fibroblasts that were invading fibrotic areas. To date, the functional nature and even the existence of 3D cell matrix adhesions in vivo as well as in 3D culture models is still unclear and controversial. Here, we show that attachment of fibroblasts to the d3D-LTCs evidently occurred via focal adhesions, thus advocating for a relevant functional role in vivo. Furthermore, we found that protein levels of talin, paxillin, and zyxin and phosphorylation levels of paxillin Y118, as well as the migration-relevant small GTPases RhoA, Rac, and CDC42, were significantly reduced compared with their attachment to 2D plastic dishes. In summary, our results strikingly indicate that inherent physical or compositional characteristics of the ECM act as instructive cues altering the functional behavior of engrafted cells. Thus, d3D-LTCs might aid to obtain more realistic data in vitro, with a high relevance for drug discovery and mechanistic studies alike.


2007 ◽  
Vol 292 (5) ◽  
pp. L1111-L1125 ◽  
Author(s):  
Hiam Abdala-Valencia ◽  
Julie Earwood ◽  
Shelly Bansal ◽  
Michael Jansen ◽  
George Babcock ◽  
...  

Pulmonary eosinophilia is one of the most consistent hallmarks of asthma. Infiltration of eosinophils into the lung in experimental asthma is dependent on the adhesion molecule vascular cell adhesion molecule-1 (VCAM-1) on endothelial cells. Ligation of VCAM-1 activates endothelial cell NADPH oxidase, which is required for VCAM-1-dependent leukocyte migration in vitro. To examine whether endothelial-derived NADPH oxidase modulates eosinophil recruitment in vivo, mice deficient in NADPH oxidase (CYBB mice) were irradiated and received wild-type hematopoietic cells to generate chimeric CYBB mice. In response to ovalbumin (OVA) challenge, the chimeric CYBB mice had increased numbers of eosinophils bound to the endothelium as well as reduced eosinophilia in the lung tissue and bronchoalveolar lavage. This occurred independent of changes in VCAM-1 expression, cytokine/chemokine levels (IL-5, IL-10, IL-13, IFNγ, or eotaxin), or numbers of T cells, neutrophils, or mononuclear cells in the lavage fluids or lung tissue of OVA-challenged mice. Importantly, the OVA-challenged chimeric CYBB mice had reduced airway hyperresponsiveness (AHR). The AHR in OVA-challenged chimeric CYBB mice was restored by bypassing the endothelium with intratracheal administration of eosinophils. These data suggest that VCAM-1 induction of NADPH oxidase in the endothelium is necessary for the eosinophil recruitment during allergic inflammation. Moreover, these studies provide a basis for targeting VCAM-1-dependent signaling pathways in asthma therapies.


2021 ◽  
Author(s):  
Yipu Wang ◽  
Dong Mei ◽  
Xinyi Zhang ◽  
Da-Hui Qu ◽  
Ju Mei ◽  
...  

With increase of social aging, Alzheimer's disease (AD) has been one of the serious diseases threatening human health. The occurrence of A<i>β </i>fibrils<i> </i>or plaques is recognized as the hallmark of AD.<i> </i>Currently, optical imaging has stood out to be a promising technique for the imaging of A<i>β</i> fibrils/plaques and the diagnosis of AD. However, restricted by their poor blood-brain barrier (BBB) penetrability, short-wavelength excitation and emission, and aggregation-caused quenching (ACQ) effect, the clinically used gold-standard optical probes such as <a>thioflavin</a> T (ThT) and thioflavin S (ThS), are not effective enough in the early diagnosis of AD <i>in vivo</i>. Herein, we put forward an “all-in-one” design principle and demonstrate its feasibility in developing high-performance fluorescent probes which are specific to A<i>β</i> fibrils/plaques and promising for super-early <i>in</i>-<i>vivo</i> diagnosis of AD. As a proof of concept, a simple rod-like amphiphilic NIR fluorescent AIEgen, i.e., AIE-CNPy-AD, is developed by taking the specificity, BBB penetration ability, deep-tissue penetration capacity, high signal-to-noise ratio (SNR) into consideration. AIE-CNPy-AD is constituted by connecting the electron-donating and accepting moieties through single bonds and tagging with a propanesulfonate tail, giving rise to the NIR fluorescence, aggregation-induced emission (AIE) effect, amphiphilicity, and rod-like structure, which in turn result in high binding-affinity and excellent specificity to A<i>β</i> fibrils/plaques, satisfactory ability to penetrate BBB and deep tissues, ultrahigh SNR and sensitivity, and high-fidelity imaging capability. <i>In-vitro, ex-vivo,</i> and <i>in-vivo</i> <a>identifying of A<i>β</i> fibrils/plaques</a> in different strains of mice indicate that AIE-CNPy-AD holds the universality to the detection of A<i>β</i> fibrils/plaques. It is noteworthy that AIE-CNPy-AD is even able to trace the small and sparsely distributed A<i>β</i> fibrils/plaques in very young AD model mice such as 4-month-old APP/PS1 mice which are reported to be the youngest mice to have A<i>β</i> deposits in brains, suggesting its great potential in diagnosis and intervention of AD at a super-early stage.


2021 ◽  
Vol 7 (2) ◽  
pp. 207-210
Author(s):  
Sebastian Böhlen ◽  
Sebastian Konzok ◽  
Jennifer Labisch ◽  
Susann Dehmel ◽  
Dirk Schaudien ◽  
...  

Abstract Current in vitro and in vivo disease models have been reported to lack sufficient translation to human. Precision-Cut Lung Slices (PCLS) are viable sections of lung tissue and have been described to be a translational model for the ex vivo assessment of pharmacological and toxicological compounds. In most studies PCLS were cultured under static conditions. These lung sections, however, suffer from the limited viability. Here we present a novel modular microphysiological system (MPS) to prolong the cultivation of ex vivo lung tissue. A tailored MPS setup was designed using the PDMS free modular plug&play MPS construction kit. PCLS from mice were cultivated for up to one week under static versus perfused conditions. Using the MPS technology enabled a prolonged culture period with improved viability as shown by lowered lactate dehydrogenase release and improved membrane integrity. Using this technology might allow us to use PCLS for longer culture periods such as e.g. repeated dose toxicity or pharmacology studies.


2016 ◽  
Vol 31 ◽  
pp. 108-117 ◽  
Author(s):  
Abhijeet D. Kulkarni ◽  
Deepak B. Bari ◽  
Sanjay J. Surana ◽  
Chandrakantsing V. Pardeshi

2015 ◽  
Vol 309 (4) ◽  
pp. L323-L332 ◽  
Author(s):  
Gerald Burgstaller ◽  
Sarah Vierkotten ◽  
Michael Lindner ◽  
Melanie Königshoff ◽  
Oliver Eickelberg

During the last decades, the study of cell behavior was largely accomplished in uncoated or extracellular matrix (ECM)-coated plastic dishes. To date, considerable cell biological efforts have tried to model in vitro the natural microenvironment found in vivo. For the lung, explants cultured ex vivo as lung tissue cultures (LTCs) provide a three-dimensional (3D) tissue model containing all cells in their natural microenvironment. Techniques for assessing the dynamic live interaction between ECM and cellular tissue components, however, are still missing. Here, we describe specific multidimensional immunolabeling of living 3D-LTCs, derived from healthy and fibrotic mouse lungs, as well as patient-derived 3D-LTCs, and concomitant real-time four-dimensional multichannel imaging thereof. This approach allowed the evaluation of dynamic interactions between mesenchymal cells and macrophages with their ECM. Furthermore, fibroblasts transiently expressing focal adhesions markers incorporated into the 3D-LTCs, paving new ways for studying the dynamic interaction between cellular adhesions and their natural-derived ECM. A novel protein transfer technology (FuseIt/Ibidi) shuttled fluorescently labeled α-smooth muscle actin antibodies into the native cells of living 3D-LTCs, enabling live monitoring of α-smooth muscle actin-positive stress fibers in native tissue myofibroblasts residing in fibrotic lesions of 3D-LTCs. Finally, this technique can be applied to healthy and diseased human lung tissue, as well as to adherent cells in conventional two-dimensional cell culture. This novel method will provide valuable new insights into the dynamics of ECM (patho)biology, studying in detail the interaction between ECM and cellular tissue components in their natural microenvironment.


Sign in / Sign up

Export Citation Format

Share Document