scholarly journals Highly Specific Blood-Brain Barrier Transmigrating Single-Domain Antibodies Selected by an In Vivo Phage Display Screening

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1598
Author(s):  
Sandra Isabel Aguiar ◽  
Joana N. R. Dias ◽  
Ana Santos André ◽  
Marta Lisete Silva ◽  
Diana Martins ◽  
...  

A major bottleneck in the successful development of central nervous system (CNS) drugs is the discovery and design of molecules that can cross the blood-brain barrier (BBB). Nano-delivery strategies are a promising approach that take advantage of natural portals of entry into the brain such as monoclonal antibodies (mAbs) targeting endogenous BBB receptors. However, the main selected mAbs rely on targeting broadly expressed receptors, such as the transferrin and insulin receptors, and in selection processes that do not fully mimic the native receptor conformation, leading to mistargeting and a low fraction of the administered dose effectively reaching the brain. Thus, there is an urgent need to identify new BBB receptors and explore novel antibody selection approaches that can allow a more selective delivery into the brain. Considering that in vitro models fail to completely mimic brain structure complexity, we explored an in vivo cell immunization approach to construct a rabbit derived single-domain antibody (sdAb) library towards BBB endothelial cell receptors. The sdAb antibody library was used in an in vivo phage display screening as a functional selection of novel BBB targeting antibodies. Following three rounds of selections, next generation sequencing analysis, in vitro brain endothelial barrier (BEB) model screenings and in vivo biodistribution studies, five potential sdAbs were identified, three of which reaching >0.6% ID/g in the brain. To validate the brain drug delivery proof-of-concept, the most promising sdAb, namely RG3, was conjugated at the surface of liposomes encapsulated with a model drug, the pan-histone deacetylase inhibitor panobinostat (PAN). The translocation efficiency and activity of the conjugate liposome was determined in a dual functional in vitro BEB-glioblastoma model. The RG3 conjugated PAN liposomes enabled an efficient BEB translocation and presented a potent antitumoral activity against LN229 glioblastoma cells without influencing BEB integrity. In conclusion, our in vivo screening approach allowed the selection of highly specific nano-antibody scaffolds with promising properties for brain targeting and drug delivery.

2018 ◽  
Vol 1 (2) ◽  
pp. 146-161 ◽  
Author(s):  
Mirjam M Nordling-David ◽  
Elior Rachamin ◽  
Etty Grad ◽  
Gershon Golomb

Delivery of drugs into the brain is limited due to poor penetrability of many drugs via the blood-brain barrier. Previous studies have shown that the brain is kept under close surveillance by the immune system, implying that circulating phagocytic cells, such as neutrophils and monocytes, are crossing the blood-brain barrier. We hypothesized that charged liposomes could be transported to the brain following their phagocytosis by circulating monocytes. In this work, we investigated the capacity of circulating monocytes to be exploited as a drug delivery system following IV administration of nano-sized, positively fluorescently labeled liposomes containing the protein lysozyme. Negatively charged fluorescently labeled liposomes were used for comparison. By using a modified thin-film hydration technique, the desired properties of the liposomal formulations were achieved including size, polydispersity index, high drug concentration, and stability. In vitro results showed a significant time-dependent uptake of positively charged liposomes by RAW264.7 cells. In vivo results revealed that circulating white blood cells (mainly monocytes) contained high levels of fluorescently labeled liposomes. Screening of brain sections using confocal microscopy uncovered that a substantial amount of fluorescently labeled liposomes, in contrast to the fluorescent markers in solution, was transported into the brain. In addition, anti-CD68 immunofluorescent staining of brain sections demonstrated co-localization of positively charged liposomes and macrophages in different brain sections. Furthermore, significantly higher levels of lysozyme were detected in brain lysates from rats treated with positively charged liposomes compared to rats treated with lysozyme solution. Taken together this confirms our hypothesis that the designed liposomes were transported to the brain following their phagocytosis by circulating monocytes.


2020 ◽  
Vol 21 (9) ◽  
pp. 674-684 ◽  
Author(s):  
Saleha Rehman ◽  
Bushra Nabi ◽  
Faheem Hyder Pottoo ◽  
Sanjula Baboota ◽  
Javed Ali

Background: Neuropsychiatric diseases primarily characterized by dementia stand third in the global list of diseases causing disability. The poor water solubility, erratic oral absorption, low bioavailability, poor intestinal absorption, and the impeding action of the blood-brain barrier (BBB) are the major factors limiting the therapeutic feasibility of the antipsychotics. Only a small percentage of antipsychotics reaches the therapeutic target site, which warrants administration of high doses, consequently leading to unwanted side-effects. Hence the main struggle for the effective treatment of neuropsychiatric diseases occurs “at the gates” of the brain, which can be mitigated with the use of a nanotechnology-based platform. Methods: The goal of this review is to undertake a comprehensive study about the role of lipid nanoformulations in facilitating the delivery of antipsychotics across BBB along with the available in vitro and in vivo evidence. Results: Lipid nanoformulations have attained great popularity for the delivery of therapeutics into the brain. Their nanosize helps in overcoming the biological barriers, thereby providing easy BBB translocation of the drugs. Besides, they offer numerous advantages like controlled and targeted drug release, minimizing drug efflux, long storage stability, augmented bioavailability, and reduced adverse drug effects to attain an optimal therapeutic drug concentration in the brain. Moreover, employing alternative routes of administration has also shown promising results. Conclusion: Thus, it can be concluded that the lipid nanoformulations bear immense potential in overcoming the challenges associated with the treatment of neuropsychiatric disorders. However, the area warrants further clinical studies to ensure their commercialization, which could revolutionize the treatment of neuropsychiatric diseases in the coming decades.


2013 ◽  
Vol 2 (3) ◽  
pp. 241-257 ◽  
Author(s):  
Jingyan Li ◽  
Cristina Sabliov

AbstractThe blood-brain barrier (BBB), which protects the central nervous system (CNS) from unnecessary substances, is a challenging obstacle in the treatment of CNS disease. Many therapeutic agents such as hydrophilic and macromolecular drugs cannot overcome the BBB. One promising solution is the employment of polymeric nanoparticles (NPs) such as poly (lactic-co-glycolic acid) (PLGA) NPs as drug carrier. Over the past few years, significant breakthroughs have been made in developing suitable PLGA and poly (lactic acid) (PLA) NPs for drug delivery across the BBB. Recent advances on PLGA/PLA NPs enhanced neural delivery of drugs are reviewed in this paper. Both in vitro and in vivo studies are included. In these papers, enhanced cellular uptake and therapeutic efficacy of drugs delivered with modified PLGA/PLA NPs compared with free drugs or drugs delivered by unmodified PLGA/PLA NPs were shown; no significant in vitro cytotoxicity was observed for PLGA/PLA NPs. Surface modification of PLGA/PLA NPs by coating with surfactants/polymers or covalently conjugating the NPs with targeting ligands has been confirmed to enhance drug delivery across the BBB. Most unmodified PLGA NPs showed low brain uptake (<1%), which indirectly confirms the safety of PLGA/PLA NPs used for other purposes than treating CNS diseases.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 874 ◽  
Author(s):  
Petra Majerova ◽  
Jozef Hanes ◽  
Dominika Olesova ◽  
Jakub Sinsky ◽  
Emil Pilipcinec ◽  
...  

Delivery of therapeutic agents into the brain is a major challenge in central nervous system drug development. The blood–brain barrier (BBB) prevents access of biotherapeutics to their targets in the central nervous system and, therefore, prohibits the effective treatment of many neurological disorders. To find blood–brain barrier shuttle peptides that could target therapeutics to the brain, we applied a phage display technology on a primary endothelial rat cellular model. Two identified peptides from a 12 mer phage library, GLHTSATNLYLH and VAARTGEIYVPW, were selected and their permeability was validated using the in vitro BBB model. The permeability of peptides through the BBB was measured by ultra-performance liquid chromatography-tandem mass spectrometry coupled to a triple-quadrupole mass spectrometer (UHPLC-MS/MS). We showed higher permeability for both peptides compared to N–C reversed-sequence peptides through in vitro BBB: for peptide GLHTSATNLYLH 3.3 × 10−7 cm/s and for peptide VAARTGEIYVPW 1.5 × 10−6 cm/s. The results indicate that the peptides identified by the in vitro phage display technology could serve as transporters for the administration of biopharmaceuticals into the brain. Our results also demonstrated the importance of proper BBB model for the discovery of shuttle peptides through phage display libraries.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1013 ◽  
Author(s):  
Anna E. Caprifico ◽  
Peter J. S. Foot ◽  
Elena Polycarpou ◽  
Gianpiero Calabrese

The major impediment to the delivery of therapeutics to the brain is the presence of the blood-brain barrier (BBB). The BBB allows for the entrance of essential nutrients while excluding harmful substances, including most therapeutic agents; hence, brain disorders, especially tumours, are very difficult to treat. Chitosan is a well-researched polymer that offers advantageous biological and chemical properties, such as mucoadhesion and the ease of functionalisation. Chitosan-based nanocarriers (CsNCs) establish ionic interactions with the endothelial cells, facilitating the crossing of drugs through the BBB by adsorptive mediated transcytosis. This process is further enhanced by modifications of the structure of chitosan, owing to the presence of reactive amino and hydroxyl groups. Finally, by permanently binding ligands or molecules, such as antibodies or lipids, CsNCs have showed a boosted passage through the BBB, in both in vivo and in vitro studies which will be discussed in this review.


Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 5
Author(s):  
Chiara Migone ◽  
Letizia Mattii ◽  
Martina Giannasi ◽  
Stefania Moscato ◽  
Andrea Cesari ◽  
...  

Peptide oral administration is a hard goal to reach, especially if the brain is the target site. The purpose of the present study was to set up a vehicle apt to promote oral absorption of the neuropeptide dalargin (DAL), allowing it to cross the intestinal mucosal barrier, resist enzymatic degradation, and transport drugs to the brain after crossing the blood–brain barrier. Therefore, a chitosan quaternary ammonium derivative was synthesized and conjugated with methyl-β-cyclodextrin to prepare DAL-medicated nanoparticles (DAL-NP). DAL-NP particle size was 227.7 nm, zeta potential +8.60 mV, encapsulation efficiency 89%. DAL-NP protected DAL from degradation by chymotrypsin or pancreatin and tripled DAL degradation time compared to non-encapsulated DAL. Use of DAL-NP was safe for either Caco-2 or bEnd.3 cells, with the latter selected as a blood–brain barrier model. DAL-NP could also cross either the Caco-2 or bEnd.3 monolayer by the transepithelial route. The results suggest a potential DAL-NP ability to transport to the brain a DAL dose fraction administered orally, although in vivo experiments will be needed to confirm the present data obtained in vitro.


2021 ◽  
Vol 18 ◽  
Author(s):  
Min Wang ◽  
Yingying Sun ◽  
Bingying Hu ◽  
Zhisheng He ◽  
Shanshan Chen ◽  
...  

Background : The research and development of drugs for the treatment of central nervous system diseases faces many challenges at present. One of the most important questions to be answered is, how does the drug cross the blood-brain barrier to get to the target site for pharmacological action. Fluoxetine is widely used in clinical antidepressant therapy. However, the mechanism by which fluoxetine passes through the BBB also remains unclear. Under physiological pH conditions, fluoxetine is an organic cation with a relatively small molecular weight (<500), which is in line with the substrate characteristics of organic cation transporters (OCTs). Therefore, this study aimed to investigate the interaction of fluoxetine with OCTs at the BBB and BBB-associated efflux transporters. This is of great significance for fluoxetine to better treat depression. Moreover, it can provide a theoretical basis for clinical drug combinations. Methods: In vitro BBB model was developed using human brain microvascular endothelial cells (hCMEC/D3), and the cellular accumulation was tested in the presence or absence of transporter inhibitors. In addition, an in vivo trial was performed in rats to investigate the effect of OCTs on the distribution of fluoxetine in the brain tissue. Fluoxetine concentration was determined by a validated UPLC-MS/MS method. Results: The results showed that amantadine (an OCT1/2 inhibitor) and prazosin (an OCT1/3 inhibitor) significantly decreased the cellular accumulation of fluoxetine (P <.001). Moreover, we found that N-methylnicotinamide (an OCT2 inhibitor) significantly inhibited the cellular uptake of 100 and 500 ng/mL fluoxetine (P <.01 and P <.05 respectively). In contrast, corticosterone (an OCT3 inhibitor) only significantly inhibited the cellular uptake of 1000 ng/mL fluoxetine (P <.05). The P-glycoprotein (P-gp) inhibitor, verapamil, and the multidrug resistance resistance-associated proteins (MRPs) inhibitor, MK571, significantly decreased the cellular uptake of fluoxetine. However, intracellular accumulation of fluoxetine was not significantly changed when fluoxetine was incubated with the breast cancer resistance protein (BCRP) inhibitor Ko143. Furthermore, in vivo experiments proved that corticosterone and prazosin significantly inhibited the brain-plasma ratio of fluoxetine at 5.5 h and 12 h, respectively. Conclusion: OCTs might play a significant role in the transport of fluoxetine across the BBB. In addition, P-gp, BCRP, and MRPs seemed not to mediate the efflux transport of fluoxetine.


Author(s):  
Viana Manrique-Suárez ◽  
Nelson Santiago Vispo ◽  
Oliberto Sánchez Ramos

: The main obstacle to biopharmaceutical delivery in therapeutic concentration into the brain for treating neurological disorders is the presence of the blood-brain barrier (BBB). The physiological process of receptor-mediated transcytosis (RMT) to transport cargo through the brain endothelial cells toward brain parenchyma has prompted researchers to search for non-natural ligands that can be used to transport drugs across the BBB. Conjugation of drugs to RMT ligands would be an effective strategy for its delivery to the central nervous system. An attractive approach to identify novel transcytosing ligands is the screening by phage display combinatorial libraries. The main technology strength lies in the large variety of exogenous peptides or proteins displayed on the phage's surface. Here, we provide a mini-review of phage display technology using in vitro and in vivo BBB models for the development of peptide-mediated drug delivery systems.


Sign in / Sign up

Export Citation Format

Share Document