scholarly journals Intranasal Zolmitriptan-Loaded Bilosomes with Extended Nasal Mucociliary Transit Time for Direct Nose to Brain Delivery

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1828
Author(s):  
Mai M. El El Taweel ◽  
Mona H. Aboul-Einien ◽  
Mohammed A. Kassem ◽  
Nermeen A. Elkasabgy

This study aimed at delivering intranasal zolmitriptan directly to the brain through preparation of bilosomes incorporated into a mucoadhesive in situ gel with extended nasal mucociliary transit time. Zolmitriptan-loaded bilosomes were constructed through a thin film hydration method applying Box–Behnken design. The independent variables were amount of sodium deoxycholate and the amount and molar ratio of cholesterol/Span®40 mixture. Bilosomes were assessed for their entrapment efficiency, particle size and in vitro release. The optimal bilosomes were loaded into mucoadhesive in situ gel consisting of poloxamer 407 and hydroxypropyl methylcellulose. The systemic and brain kinetics of Zolmitriptan were evaluated in rats by comparing intranasal administration of prepared gel to an IV solution. Statistical analysis suggested an optimized bilosomal formulation composition of sodium deoxycholate (5 mg) with an amount and molar ratio of cholesterol/Span®40 mixture of 255 mg and 1:7.7, respectively. The mucoadhesive in situ gel containing bilosomal formulation had a sol-gel temperature of 34.03 °C and an extended mucociliary transit time of 22.36 min. The gelling system possessed enhanced brain bioavailability compared to bilosomal dispersion (1176.98 vs. 835.77%, respectively) following intranasal administration. The gel revealed successful brain targeting with improved drug targeting efficiency and direct transport percentage indices. The intranasal delivery of mucoadhesive in situ gel containing zolmitriptan-loaded bilosomes offered direct nose-to-brain drug targeting with enhanced brain bioavailability.

2018 ◽  
Vol 10 (4) ◽  
pp. 153 ◽  
Author(s):  
Fadia Yassir Al-bazzaz ◽  
Myasar Al-kotaji

Objective: This work aims to formulate and evaluate an ophthalmic in-situ gel of ciprofloxacin hydrochloride (HCl) using poloxamer 407 (P407) as a gelling agent and hydroxypropyl methylcellulose (HPMC) as a viscosity modifier. The objective of this work was to prolong the contact time as the in-situ gel will be converted into a gel upon contact with the cul-de-sac. Methods: Ciprofloxacin HCl ophthalmic in-situ gel was prepared by utilizing (P407) as a temperature-dependent polymer while hydroxypropyl methylcellulose was used as a viscosity modifier. The system was evaluated for physical appearance, pH, drug content, sterility, irritancy and stability. In addition, gelation temperature and a viscosity at different shear rates and different temperatures were studied. The compatibility of the polymer with ciprofloxacin was studied by using fourier transform infrared spectroscopy (FTIR). The in vitro release of the drug was also evaluated and supported by a preliminary in vivo test.Results: The results showed that the prepared formulas were clear, with acceptable pH and the drug contents were within the acceptable limits. FTIR results detected no incompatibility between poloxamer 407 and ciprofloxacin HCl. Notably, the viscosity of the system showed a pseudoplastic behaviour where a reduction in viscosity upon increasing the shear rate was observed. The in vitro release study confirmed the prolongation of the release of the optimized formula (F6) up to 8 h. Upon application of F6 into eyes of rabbits there was no irritancy. In addition, in vivo elimination study showed a prolonged contact for the in-situ gel in comparison with the rapid clearance of eye drop. Stability study indicated the stability of the optimized formula (F6). Conclusion: The prepared optimized formula (F6) represents a successful, safe, stable and prolonged release in-situ gel formula of ciprofloxacin.


2018 ◽  
Vol 10 (5) ◽  
pp. 76
Author(s):  
Methaq Hamad Sabar ◽  
Iman Sabah Jaafar ◽  
Masar Basim Mohsin Mohamed

Objective: The aim of this study was to formulate ketoconazole (keto) as oral floating in situ gel to slow the release of keto in the stomach.Methods: Sodium alginate (Na alginate) was used as a primary polymer in the preparation of the in situ gel and was supported by the following polymers: guar gum (GG), hydroxypropyl methylcellulose (HPMC) K4M, K15M and carbapol 940 as viscosity enhancing agents. As a consequence, and to complete the gelation process of above formulations was by adding the calcium carbonate (CaCO3). The in situ gels were investigated by the following tests: floating lag time, floating duration, viscosity, drug content, in vitro gelling studies and in vitro release study.Results: The study showed that the faster release was obtained with F1 which contained Na alginate alone. Additionally, reduction in Na alginate concentration resulted in significant increase in drug release. It was also noted that the increase in GG (viscosity enhancing polymer) concentration resulted in non-significant decrease in percent drug release and the reduction in CaCO3 concentration led to significant increase in drug release. Moreover, the release of drug was also affected by grade of viscosity enhancing polymer, the faster release was observed with the formula which contained a polymer of low viscosity (HPMC K4M) and an opposite result was with the high viscosity polymer (HPMCK15M).Conclusion: This study showed the formulation of Na alginate with GG and CaCO3, led to gain floating in situ gel and a sustained release of keto. 


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (07) ◽  
pp. 33-35
Author(s):  
A Dubey ◽  
◽  
P Prabhu ◽  
N Nair ◽  
K Beladiya ◽  
...  

The aim of the present investigation was to develop a combination of timolol maleate and travoprost niosomal in situ gelling system for the treatment of glaucoma. Niosomes were prepared by thin film hydration technique using rotary flash evaporator. A 32 factorial design was utilized to study the effect of the molar ratio of Span 60 (X1) and cholesterol (X2) on vesicle size, drug entrapment efficiency and in vitro release study. On the basis of vesicle size, maximum entrapment efficiency and in vitro release of drug, best formulations were selected for the preparation of niosomal in situ gel (Drop). On the basis of gelling time and viscosity, optimized ratio of the polymers was selected for the desired preparation. Selected niosomal batches were dispersed in carbopol 940 and HPMC K4M polymer solution (combination IF6) to form in situ gel niosomal formulations (Drop). The gelling time of the niosomal in situ gel (NIF1) was found to be the best (+++) and the viscosity was found to be 1190 cP. Zeta potential, average size analysis, polydispersibility index value was found to be -45.1 mV, 256.5 nm, 0.228 respectively. In vitro drug release was found to be within the range of 50.23 ± 0.54 to 60.23 ± 0.33% over the period of 6 h. IOP lowering activity of best formulation (NIF1) showed more significant and sustained effect than the marketed eye drops. Best formulation (NIF1) was found to be stable, sterile, non irritant and isotonic. Hence niosomal in situ gelling combination system may have the potential of bringing better application than the conventional ocular therapy with improved ocular bioavailability and increased patient compliance.


Author(s):  
Kamla Pathak ◽  
Anil Kumar ◽  
Ekta Yadav

The aim of the investigation was to develop and evaluate thermoreversible in situ nasal gel formulations of repaglinide (REP) and to establish correlation between its in vitro release and ex vivo permeation profiles. The solubility of REP was enhanced by preparing solid dispersions (SDs) with hydrophilic carriers (PVP K30/ PEG 6000/ poloxamer 188) in different weight ratios. REP: PVP K30 (1:5) was selected as the optimized SD as it showed highest enhancement in solubility (405%). The optimized SD was characterized by SEM and DSC and incorporated into a blend of thermoreversible and mucoadhesive polymers (poloxamer 407 and carbopol 934 P) by cold technique to form in situ gels (F1-F6). The prepared in-situ gels were evaluated for various pharmacotechnical features and the formulation F3 exhibited least gelling time of 6.1± 0.20, good mucoadhesive property to ensure sufficient residence time at the site of application and a %CDR of 82.25%. The ex vivo permeation characteristics across goat mucosa can be summarized as CDP of 78.7%, flux = 6.80 mg/cm2/h; permeability coefficient of 2.02 mg/h and zero order kinetics. On correlating the CDR profile of F3 with that of its CDP profile, a R2 value of 0.991 (slope= 0.921) was observed. The value of slope approximating one, suggested that almost entire amount of drug released from F3 was capable of permeating across the nasal mucosa, ex-vivo indicating that in-situ nasal gels of REP for systemic action can be successfully developed for the management non-insulin dependent type-II diabetes mellitus.


2019 ◽  
Vol 9 (01) ◽  
pp. 76-82 ◽  
Author(s):  
Insan Sunan Kurniawansyah ◽  
Norisca Aliza Putriana ◽  
Agung Fitri Kusuma ◽  
Tan Mei Lee

Introduction: In-situ gel is a simple liquid transparent polymer solution under storage conditions, but turns into a viscoelastic gel after entering the eye due to the phase transition properties of the polymer that increase the residence time in ocular organ and bioavailability, enabling the delivery of reproducible doses and improving patient compliance. The aim of the present study was to formulate and evaluate the antibacterial effectivity of chloramphenicol in-situ ophthalmic gel with base poloxamer 407 and HPMC base against Staphylococcus aureus and Pseudomonas aeruginosa. Material and Methods: The optimization of ophthalmic gel preparation by the factorial design method has been carried out in order to know the best formula of all the formulas employed with 0.5% chloramphenicol active substance, wherein each formula was obtained from high concentration and low concentration of each base. Results: The measurement of the antibacterial effectivity against Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 27853 by oneway ANOVA analysis showed that formula with base poloxamer 407 5% (F1) gave the best result. F1 has a dilute consistency, clear and stable during 28 days storage time when effectiveness test performed. Conclusions: Chloramphenicol in-situ gel with base poloxamer 407 and HPMC were effective against Staphylococcus aureus ATCC 29213 with intermediate to sensitive category, and Pseudomonas aeruginosa ATCC 27853 with sensitive category in accordance to the requirements of the Clinical and Laboratory Standards Institute (CLSI).


Author(s):  
ANKITA KAPOOR ◽  
G. D. GUPTA

Objective: The present research work aims at describing the formulation, optimization and evaluation of ion activated ocular in-situ gel of gatifloxacin for treatment of bacterial conjunctivitis so as to overcome patient inconvenience, precorneal drug elimination, variation in efficacy, vision blurring and frequent instillation associated with conventional eye drops and ointments. Methods: In-situ gel was prepared using gellan gum as an ion activated phase transition polymer and HPMC K100M as release retardant. Gatifloxacin was characterized by spectrophotometry. Crystalline state of the drug was determined using X Ray Diffraction study. The developed formulation exhibited instantaneous gel formation in simulated lacrimal fluid (pH 7.4), which was further evaluated for its rheology, irritancy parameters, in vitro release, trans-corneal permeation and antimicrobial activity. Results: Gatifloxacin exhibited λmax 286 nm obeying Beer Lambert’s law and pH-dependent solubility at a pH range of 2 to 4. 0.6% gellan gum and 0.4% HPMC K100M were optimized in the formulation which exhibited a viscosity of 55 cps in sol form and 325 cps in gel form with pseudoplastic behavior and prolonged in vitro release. Permeation of formulation was 75.8% in 7 h with log P of drug 0.59. Developed isotonic and non-irritant formulation had a lower apparent permeability coefficient of 8.15 x 10-5 cm/sec as compared to marketed formulation. Conclusion: A Formulation can be viewed as an efficacious medicine by virtue of its higher zone of inhibition, ability to enhance precorneal residence time and consequently ocular bioavailability with lesser frequency of administration attributed to slow and prolonged diffusion of the drug from the polymeric solutions.


Author(s):  
Hussein K. Alkufi ◽  
Hanan J. Kassab

     Objective: The purpose of this study to develop and optimize nasal mucoadhesive in situ gel IG of sumatriptan ST (serotonin agonist) to enhance nasal residence time for migraine management.      Method: Cold method was used to prepare ST nasal in-situ gel, using thermosensitive polymers (poloxamer 407  and/or poloxamer 188) with a mucoadhesive polymer (hyaluronic acid HA) which were examined for gelation temperature and gelation time, pH, drug content, gel strength, spreadability, mucoadhesive force determination, viscosity,  in-vitro drug release, and the selected formula was subjected to ex-vivo permeation study and histological evaluation of the sheep mucosal tissue after application.     Results: The results showed that the formula IG7 prepared from poloxamer 407(19%), poloxamer188 (4%) and HA (0.5%)   had an optimum gelation temperature (32.66±1.52°C), gel  strength (43.66± 1.52 sec),  mucoadhesive force (8067.93± 746.45dyne\cm2), in-vitro drug release (95.98%) over 6hr, ex-vivo permeation study release (89.6%)  during the 6 h. study with no  histological or pathological change in the nasal sheep tissue.     Conclusion: The ease of administration via a nasal drop of ST coupled with less frequent administration and prolong drug release, will enhance patient compliance.


Sign in / Sign up

Export Citation Format

Share Document