scholarly journals Development and Correlation between in vitro Drug Release and in vitro Permeation of Thermally Triggered Mucoadhesive in situ Nasal Gel of Repaglinide PVP K30 Complex

Author(s):  
Kamla Pathak ◽  
Anil Kumar ◽  
Ekta Yadav

The aim of the investigation was to develop and evaluate thermoreversible in situ nasal gel formulations of repaglinide (REP) and to establish correlation between its in vitro release and ex vivo permeation profiles. The solubility of REP was enhanced by preparing solid dispersions (SDs) with hydrophilic carriers (PVP K30/ PEG 6000/ poloxamer 188) in different weight ratios. REP: PVP K30 (1:5) was selected as the optimized SD as it showed highest enhancement in solubility (405%). The optimized SD was characterized by SEM and DSC and incorporated into a blend of thermoreversible and mucoadhesive polymers (poloxamer 407 and carbopol 934 P) by cold technique to form in situ gels (F1-F6). The prepared in-situ gels were evaluated for various pharmacotechnical features and the formulation F3 exhibited least gelling time of 6.1± 0.20, good mucoadhesive property to ensure sufficient residence time at the site of application and a %CDR of 82.25%. The ex vivo permeation characteristics across goat mucosa can be summarized as CDP of 78.7%, flux = 6.80 mg/cm2/h; permeability coefficient of 2.02 mg/h and zero order kinetics. On correlating the CDR profile of F3 with that of its CDP profile, a R2 value of 0.991 (slope= 0.921) was observed. The value of slope approximating one, suggested that almost entire amount of drug released from F3 was capable of permeating across the nasal mucosa, ex-vivo indicating that in-situ nasal gels of REP for systemic action can be successfully developed for the management non-insulin dependent type-II diabetes mellitus.

2021 ◽  
Vol 14 ◽  
Author(s):  
Sarbjot Kaur ◽  
Ujjwal Nautiyal ◽  
Pooja A. Chawla ◽  
Viney Chawla

Background: Background: Olanzapine belongs to a new class of dual spectrum antipsychotic agents. It is known to show promise in managing both the positive and negative symptoms of schizophrenia. Drug delivery systems based on nanostructured lipid carriers (NLC) are expected to provide rapid nose-to-brain transport of this drug and improved distribution into and within the brain. Objective: The present study deals with the preparation and evaluation of olanzapine loaded NLC via the intranasal route for schizophrenia. Methods: Olanzapine-NLC were formulated through the solvent injection method using isopropyl alcohol as the solvent, stearic acid as solid lipid, and oleic acid as liquid lipid, chitosan as a coating agent, and Poloxamer 407 as a surfactant. NLC were characterized for particle size, polydispersity index, entrapment efficiency, pH, viscosity, X-ray diffraction studies, in-vitro mucoadhesion study, in- vitro release and ex-vivo permeation studies. The shape and surface morphology of the prepared NLC was determined through transmission electron microscopy. To detect the interaction of the drug with carriers, compatibility studies were also carried out. Results: Average size and polydispersity index of developed formulation S6 was 227.0±6.3 nm and 0.460 respectively. The encapsulation efficiency of formulation S6 was found to be 87.25 %. The pH, viscosity, in-vitro mucoadhesion study, and in- vitro release of optimized olanzapine loaded NLC were recorded as 5.7 ± 0.05, 78 centipoise, 15±2 min, and 91.96 % respectively. In ex-vivo permeation studies, the percent drug permeated after 210 min was found to be 84.03%. Conclusion: These results reveal potential application of novel olanzapine-NLC in intranasal drug delivery system for treatment of schizophrenia.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (09) ◽  
pp. 83-85
Author(s):  
A Ambavkar ◽  
◽  
N. Desai

The objective of the study was to develop and evaluate nanolipid carriers based in situ gel of Carbamazepine, for brain delivery through intranasal route. The non – invasive nasal route can provide rapid delivery of drugs directly to the central nervous system by bypassing the blood brain barrier. The nanolipid carriers of carbamazepine as in situ nasal gel can prolong the drug release for control of repetitive seizures and were prepared by Phase Inversion Temperature technique. The retention of the carriers in the nasal cavity was improved by using Poloxamer 407 as thermoresponsive and Carbopol 974P as mucoadhesive gelling polymers, respectively. The developed gel was evaluated for particle size, polydispersity index, zeta potential, morphology, entrapment efficiency, mucoadhesive and thermoresponsive behaviour, in vitro drug release, ex vivo permeation and nasociliotoxicity. The gel showed sustained release over prolonged periods and was found to be non-toxic to the sheep nasal mucosa.


Author(s):  
Hussein K. Alkufi ◽  
Hanan J. Kassab

     Objective: The purpose of this study to develop and optimize nasal mucoadhesive in situ gel IG of sumatriptan ST (serotonin agonist) to enhance nasal residence time for migraine management.      Method: Cold method was used to prepare ST nasal in-situ gel, using thermosensitive polymers (poloxamer 407  and/or poloxamer 188) with a mucoadhesive polymer (hyaluronic acid HA) which were examined for gelation temperature and gelation time, pH, drug content, gel strength, spreadability, mucoadhesive force determination, viscosity,  in-vitro drug release, and the selected formula was subjected to ex-vivo permeation study and histological evaluation of the sheep mucosal tissue after application.     Results: The results showed that the formula IG7 prepared from poloxamer 407(19%), poloxamer188 (4%) and HA (0.5%)   had an optimum gelation temperature (32.66±1.52°C), gel  strength (43.66± 1.52 sec),  mucoadhesive force (8067.93± 746.45dyne\cm2), in-vitro drug release (95.98%) over 6hr, ex-vivo permeation study release (89.6%)  during the 6 h. study with no  histological or pathological change in the nasal sheep tissue.     Conclusion: The ease of administration via a nasal drop of ST coupled with less frequent administration and prolong drug release, will enhance patient compliance.


Author(s):  
Hema a Nair ◽  
NAZIA BEGUM

Objective: The present study is intended to investigate the applicability of poloxamer- and chitosan-based temperature induced in situ injectable gelling depot for once a week therapy as an intramuscular injection employing olanzapine as a model drug. Methods: The thermosetting gel was prepared by admixture of a solution of poloxamer P127 and a solution of olanzapine and chitosan in aqueous acetic acid. The resultant formulation was characterized for gelation temperature, gelation time, viscosity, syringeability, pH, drug content, and in vitro drug release. The in vitro release of olanzapine from the gelled depot was followed using USP paddle type II apparatus in conjunction with a dialysis bag. The gel was injected ex vivo into chicken muscle and observed by subsequent dissection. Results: The formulation was designed to have a phase transition temperature of 34°C and gelled in <10 s at 37°C. Addition of chitosan imparted favorable rheological properties to the poloxamer gel and resulted in a pseudoplastic mixture with low viscosity in the sol state and higher viscosity post gelation. The preparation had a pH of 5.4, appropriate drug content and readily passed through a 20 gauge needle. The release of olanzapine was unhindered by the dialysis bag. Following an initial bust, a sustained, zero-order release of the remainder of drug was observed up to 9 days. The injectable was found to form a compact depot when evaluated ex vivo. Conclusion: The developed system showed several features which make it a suitable vehicle for sustained intramuscular delivery of drugs.


Author(s):  
Reema B. Gotmare ◽  
R. S. Kushwaha ◽  
Neeraj K. Sharma

Tapentadol Hydrochloride is a Tapentadol is a centrally acting analgesic. It has 33% bioavailability due to its first pass effect and hence possesses problems in the development of oral sustained release formulations. Mucoadhesive thermo reversible in-situ nasal gel of Tapentadol HCl was designed and developed to sustain its release due to the increased nasal residence time of the formulation. Poloxamer 407 (PF 127) was selected as it has excellent thermo sensitive gelling properties. HPMCK4M was added to impart mucoadhesive to the formulation, and PEG 400 was used to enhance the drug release. 32 Factorial designs were employed to assess the effect of concentration of HPMCK4M and PEG 400 on the performance of in-situ nasal gel systematically and to optimize the formulation. An optimized in-situ nasal gel was evaluated for appearance, pH, drug content, gelation temperature, mucoadhesive force, viscosity and ex-vivo permeability of drug through nasal mucosa of a goat. Additionally, this formulation was proved to be safe as histopathological studies revealed no deleterious effect on nasal mucosa of a goat after prolonged exposure of 21 days to the optimized formulation. Thus the release of Tapentadol Hydrochloride can be sustained if formulated in an in-situ nasal gel containing poloxamer 407 to achieve its prolonged action.


2021 ◽  
Vol 11 ◽  
Author(s):  
Manza M. Priyanka ◽  
Shinde A. Ujwala ◽  
Sheth M. Kalyani ◽  
Namita Desai

Background: Acyclovir, BCS Class III drug is commercially available as 3 % w/w eye ointment for multiple applications. Acyclovir nanoemulsions can be proposed to reduce dose because of improved permeation characteristics. Further, the development of in situ ophthalmic gels can be advantageous to reduce the number of applications due to increased mucoadhesion and sustaining effect. Objective: The purpose of this study was the development and evaluation of nanoemulsions based in situ gels of Acyclovir (1% w/w) as potential ophthalmic delivery systems. Methods: Nanoemulsions of Acyclovir were developed by Phase Inversion Temperature method using Capmul MCM, stearyl amine and Kolliphor RH 40 as liquid lipid, charge inducer and surfactant, respectively selected on the basis of Acyclovir solubility studies in the oil phase and emulsification ability of surfactants. These nanoemulsions were further developed into in situ ophthalmic gels using gellan gum and Methocel K4M. Results: The developed gels showed a sustained effect in vitro release studies and improved goat corneal permeation in ex vivo studies when compared to marketed ointment. HET-CAM studies concluded the absence of irritation potential, while in vivo irritation study in Wistar rats showed the absence of erythema and swelling of eyes after visual inspection for 72 hours. Histopathological studies on isolated rat corneas showed no abnormalities in anterior corneal epithelium and corneal stroma without any epithelial hyperplasia. Acyclovir nanoemulsions based in situ ophthalmic gel showed increased corneal deposition and permeation in rat eyes. Conclusion: The improved potential of developed ophthalmic gels was proven due to the reduced frequency of application compared to the marketed ointment in animal studies.


2018 ◽  
Vol 17 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Lupe C. Espinoza ◽  
Marisol Vacacela ◽  
Beatriz Clares ◽  
Maria Luisa Garcia ◽  
Maria-Jose Fabrega ◽  
...  

Background: Donepezil (DPZ) is widely prescribed as a specific and reversible acetylcholinesterase inhibitor for the symptomatic treatment of mild to moderate Alzheimer's disease (AD). Objective: Considering the therapeutic potential of DPZ and the advantages offered by the intranasal route as an alternative for drug administration, the aim of this study was the development and characterization of a DPZ microemulsion (ME) for nose-to-brain delivery. Method: The ME was developed by construction of pseudoternary phase diagrams and characterized by dynamic light scattering and transmission electron microscopy. Flow properties and viscosity, as well as optical stability and stability under storage at different temperatures were evaluated. Finally, in vitro release and ex vivo permeation studies through porcine nasal mucosa were accomplished. Results: A transparent and homogeneous DPZ-ME (12.5 mg/ml) was obtained. The pH and viscosity were 6.38 and 44.69 mPa·s, respectively, indicating nasal irritation prevention and low viscosity. The mean droplet size was 58.9±3.2 nm with a polydispersity index of 0.19±0.04. The morphological analysis revealed the spherical shape of droplets, as well as their smooth and regular surface. Optical stability evidenced no destabilization processes. DPZ release profile indicated that the ME followed a hyperbolic kinetic model while the ex vivo permeation profile showed that the highest permeation occurred during initial 4 h and the maximum permeated amount was approximately 2000 µg, which corresponds to 80% of the starting amount of drug. Conclusion: We conclude that our nasal ME could be considered as a new potential tool for further investigation in the AD.


:Tranylcypromine is a drug used as antidepressant,anxiolytic, nonselective MAO A/B inhibitor. This drug is used to treat depression.The research was conducted to develop a polymeric micelle using a block copolymer, Pluronic F-68 and Gelucire 50/13 to improve the permeability of Tranylcypromine (TCP). A direct dissolution method was used to prepare polymeric micelles. The prepared micelles were characterised for particle size, % EE, zeta potential, in-vitro release. These micelles solution was used to prepare in situ gel by cold method in order to achieve controlled release. Central composite design was used for optimization of both polymeric micelles and insitu nasal gel.The main objective of this research work is to develop formulation acting centrally without undergoing first pass metabolism i.ie. directly nasal to brain delivery route.


Sign in / Sign up

Export Citation Format

Share Document