scholarly journals Lipid Nanoparticles for the Posterior Eye Segment

Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 90
Author(s):  
Lorena Bonilla ◽  
Marta Espina ◽  
Patricia Severino ◽  
Amanda Cano ◽  
Miren Ettcheto ◽  
...  

This review highlights the application of lipid nanoparticles (Solid Lipid Nanoparticles, Nanostructured Lipid Carriers, or Lipid Drug Conjugates) as effective drug carriers for pathologies affecting the posterior ocular segment. Eye anatomy and the most relevant diseases affecting the posterior segment will be summarized. Moreover, preparation methods and different types and subtypes of lipid nanoparticles will also be reviewed. Lipid nanoparticles used as carriers to deliver drugs to the posterior eye segment as well as their administration routes, pharmaceutical forms and ocular distribution will be discussed emphasizing the different targeting strategies most recently employed for ocular drug delivery.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 860
Author(s):  
Raneem Jnaidi ◽  
António José Almeida ◽  
Lídia M. Gonçalves

Glioblastoma multiforme (GBM) is the most common and malignant type of brain tumor. In fact, tumor recurrence usually appears a few months after surgical resection and chemotherapy, mainly due to many factors that make GBM treatment a real challenge, such as tumor location, heterogeneity, presence of the blood-brain barrier (BBB), and others. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) represent the most promising carriers for therapeutics delivery into the central nervous system (CNS) owing to their inherent ability to cross the BBB. In this review, we present the main challenges in GBM treatment, a description of SLNs and NLCs and their valuable role as drug carriers in GBM treatment, and finally, a detailed description of all modification strategies that aim to change composition of SLNs and NLCs to enhance treatment outcomes. This includes modification of SLNs and NLCs to improve crossing the BBB, reduced GBM cell resistance, target GBM cells selectively minimizing side effects, and modification strategies to enhance SLNs and NLCs nose-to-brain delivery. Finally, future perspectives on their use are also be discussed, to provide insight about all strategies with SLNs and NLCs formulation that could result in drug delivery systems for GBM treatment with highly effective theraputic and minimum undesirable effects.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4781
Author(s):  
Van-An Duong ◽  
Thi-Thao-Linh Nguyen ◽  
Han-Joo Maeng

Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have emerged as potential drug delivery systems for various applications that are produced from physiological, biodegradable, and biocompatible lipids. The methods used to produce SLNs and NLCs have been well investigated and reviewed, but solvent injection method provides an alternative means of preparing these drug carriers. The advantages of solvent injection method include a fast production process, easiness of handling, and applicability in many laboratories without requirement of complicated instruments. The effects of formulations and process parameters of this method on the characteristics of the produced SLNs and NLCs have been investigated in several studies. This review describes the methods currently used to prepare SLNs and NLCs with focus on solvent injection method. We summarize recent development in SLNs and NLCs production using this technique. In addition, the effects of solvent injection process parameters on SLNs and NLCs characteristics are discussed.


Author(s):  
Harish Dureja ◽  
Sunil Khatak

Tuberculosis (TB) is a more prevalent granulomatos bacterial infection, which remains the world’s second most common cause of death due to infections of Mycobacterium tuberculosis (M.Tuberculosis). A number of characteristics of mycobacterium makes there disease chronic and necessitate prolonged treatment. The emergence of multi-drug-resistance (MDR) stains of M.Tuberculosis makes its necessary for the development of effective combinations of either first-line or second-line drugs or discovery of new safe and effective drug molecules and also implements other modalities of treatment. A number of novel carrier-based drug delivery systems incorporating the traditional and newer anti-tubercular agents have been shown incredible promise to target the site of action, reduce dosing frequency and enhance drug bioavailability with the objective of improving patient compliance. Nanoparticulate system have unique and comparatively more effective drug delivery carriers, including liposomal-mediated drug delivery, polymeric nanoparticles/microparticles, solid lipid nanoparticles, nanosuspensions, nanoemulsions, niosomes, dendrimers, Metal/cyclodextrin inclusion complexes and other nanosystems exploiting the extraordinary properties of matter at the nanoscale. Nanoparticles shown significant improvements in diagnosis, treatment and prevention and provide the flexibility of selecting the invasive and non-invasive route of delivery for chemotherapy of tuberculosis. This manuscript have been made to highlight and overviews the present WHO estimated burden of tuberculosis globally, recent discovery of safe and effective newer anti-tubercular drug moleculesfor MDR and XDR tuberculosis, first and second line anti-tubercular drugs loaded novel nanoparticle carriers for chemotherapy and development of solid lipid nanoparticles as an alternative drug carriers for tubercular chemotherapy.  


2021 ◽  
Vol 11 (1-s) ◽  
pp. 162-169
Author(s):  
Vasu Deva Reddy Matta

Solid lipid nanoparticles (SLNs) are in submicron size range nanoparticles and are made of biocompatible and biodegradable materials (mainly composed of lipids and surfactants) capable of incorporating both lipophilic and hydrophilic drugs. SLNs are also considered as substitute to other colloidal drug systems, also used as controlled systems and targeted delivery. SLNs can be considered as an alternative for oral drug delivery vehicle to improve the oral bioavailability of drugs, associated reduction of drug toxicity and stability of drug in both GIT and plasma. There are different techniques used for the preparation of SLNs. Generally, the preparation of SLNs and any other nanoparticle system necessitates a dispersed system as precursor; otherwise particles are produced through the use of a particular instrumentation. This review provides the summary on the techniques or methods used for the development of SLNs of poorly water soluble drugs for improved drug delivery. Keywords: Solid lipid nanoparticles, controlled delivery, precursor, techniques.


2012 ◽  
Vol 1 (11) ◽  
pp. 384-393 ◽  
Author(s):  
Akanksha Garud ◽  
Deepti Singh ◽  
Navneet Garud

Solid lipid nanoparticles (SLN) have emerged as a next-generation drug delivery system with potential applications in pharmaceutical field, cosmetics, research, clinical medicine and other allied sciences. Recently, increasing attention has been focused on these SLN as colloidal drug carriers for incorporating hydrophilic or lipophilic drugs. Proteins and antigens intended for therapeutic purposes may be incorporated or adsorbed onto SLN, and further administered by parenteral routes or be alternative routes such as oral, nasal and pulmonary. The obstacles associated with conventional chemotherapy may be partially overcome by encapsulating them as SLN. The present review focuses on the utility of SLN in terms of their advantages, production methodology, characterization and applications. If properly investigated, SLNs may open new vistas in therapy of complex diseases.DOI: http://dx.doi.org/10.3329/icpj.v1i11.12065 International Current Pharmaceutical Journal 2012, 1(11): 384-393


Author(s):  
Neslihan Üstündağ Okur ◽  
Panoraia I. Siafaka ◽  
Evren Homan Gökçe

Background: The oral application of drugs is the most popular route through which the systemic effect can be achieved. Nevertheless, oral administration is limited by difficulties related to physicochemical properties of the drug molecule, including low aqueous solubility, instability, low permeability, and rapid metabolism, all of which result in low and irregular oral bioavailability. Objective: The enhancement of oral bioavailability of drug molecules with such properties could lead to extreme complications in drug preparations. Oral lipid based nanoparticles seems to possess extensive advantages due to their ability to increase the solubility, simplifying intestinal absorption and decrease or eradicate the effect of food on the absorption of low soluble, lipophilic drugs and therefore improving the oral bioavailability. Method: The present review provides a summary of the general theory of lipid based nanoparticles, their preparation methods as well as their oral applications. Moreover, the oral drug delivery challenges are discussed. Results: According to this review, the most frequent types of lipid-based nanoparticle, the solid lipid nanoparticles and nanostructured lipid carriers are potent oral carriers due to their ability to penetrate the oral drug adsorption barriers. Moreover, such lipid nanoparticles can be beneficial drug carriers against cardiovascular risk disorders as diabetes, hypertension etc. Conclusion: In this review, the most current and promising studies involving Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as oral drug carriers are reported aiming to assist researchers who focus their research on lipid based nanoparticles.


Author(s):  
MONA QUSHAWY ◽  
ALI NASR

Over the last few years, there has been a significant consideration of solid lipid nanoparticles (SLNs) as an alternative method to other colloidal dispersion methods for drug delivery. Special consideration has been given to the use of SLNs as a drug carrier in recent years. SLNs are aqueous dispersions in which the colloidal particles consist of solid lipids that are biodegradable. As a result of their physical stability, the protection of the entrapped drug from decomposition, the provision of controlled drug release, and the exceptional acceptability, SLNs have several advantages over other drug carriers. This article focuses on the techniques of SLNs preparation and characterization, the effect of formulation variables on SLNs properties, the routes of administration, and the pharmaceutical applications. The data used for this review was collected by searching on Google Scholar and PubMed using the following keywords during the period from 2010 to date.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Didem Ag Seleci ◽  
Muharrem Seleci ◽  
Johanna-Gabriela Walter ◽  
Frank Stahl ◽  
Thomas Scheper

Drug delivery systems are defined as formulations aiming for transportation of a drug to the desired area of action within the body. The basic component of drug delivery systems is an appropriate carrier that protects the drug from rapid degradation or clearance and thereby enhances drug concentration in target tissues. Based on their biodegradable, biocompatible, and nonimmunogenic structure, niosomes are promising drug carriers that are formed by self-association of nonionic surfactants and cholesterol in an aqueous phase. In recent years, numerous research articles have been published in scientific journals reporting the potential of niosomes to serve as a carrier for the delivery of different types of drugs. The present review describes preparation methods, characterization techniques, and recent studies on niosomal drug delivery systems and also gives up to date information regarding recent applications of niosomes in drug delivery.


Sign in / Sign up

Export Citation Format

Share Document