scholarly journals An Evaluation of the Binding Strength of Okra Gum and the Drug Release Characteristics of Tablets Prepared from It

Pharmaceutics ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 20 ◽  
Author(s):  
Amjad Hussain ◽  
Farah Qureshi ◽  
Nasir Abbas ◽  
Muhammad Arshad ◽  
Ejaz Ali
Author(s):  
Ashwin Kumar Saxena ◽  
Navneet Verma

Objective: The nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most widely used medications in the world because of their demonstrated efficacy in reducing pain and inflammation. The arthritis, pain and inflammation are effectively treated with Lornoxicam, an effective NSAIDs. Because the drug is weakly acidic, it is absorbed easily in the GI tract, and has a short biological half-life of 3 to 5 hours. To meet the objectives of this investigation, we developed a modified release dosage form to provide the delivery of lornoxicam at sustained rate which was designed to prolong its efficacy, reduce dosage frequency, and enhance patient compliance. The present research work was focused on the development of lornoxicam microspheres using natural polymer like okra gum extracted from the pods of Abelmoschus esculentus Linn. and synthetic polymer like ethyl cellulose along with sodium alginate prepared by Ca2+ induced ionic-gelation cross-linking in a complete aqueous environment were successfully formulated. Materials and Method: The microspheres were prepared by using sodium alginate with natural polymer (okra gum) and synthetic polymer (ethyl cellulose) in different ratios by Ca2+ induced ionic-gelation cross-linking. The formulations were optimized on the basis of drug release up to 12 hrs. The physicochemical characteristics of Lornoxicam microspheres such as drug polymer interaction study by Fourier Transform Infrared (FTIR) and further confirmation by Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). The formulated microspheres were characterized for particle size, percentage drug entrapment efficiency, micromeritic properties, surface morphology, percentage swelling index, in-vitro drug release study and mechanism of drug release. Results and Discussion: The FTIR Spectra revealed that there was no interaction between polymer and Lornoxicam which was further confirmed by DSC and XRD. All the formulated Lornoxicam microspheres were spherical in shape confirmed by SEM. The microspheres exhibited good flow properties and also showed high percentage drug entrapment efficiency. All the batches have excellent flow properties with angle of repose in the range of 25.38° ± 0.04 to 30.41° ± 0.07, carr’s index and hausner’s ratios in the range of 10.40% ± 0.018 to 16.66% ± 0.012 and 1.128 ± 0.09 to 2.225 ± 0.01, respectively. The optical microscopic studies revealed that the mean particle size of all the formulations were found in the range of 819.46 ± 0.07 to 959.88 ± 0.02 μm and percentage of drug entrapment were found to be between 72.35 ± 0.02 to 90.00 ± 0.05. Swelling index of prepared microspheres revealed that with increasing the polymer ratios, there were increase in the swelling of prepared microspheres, showing in the range of 600.76 ± 0.42 to 690.11 ± 0.03% for okra gum microspheres at the end of 9 hr in comparison with ethyl cellulose microspheres which ranges between 179.71 ± 0.07 to 227.73 ± 0.05% at the end of 7 hr. In-vitro drug release of prepared microspheres formulation code LSO4 and LSE4 were found to be 88.654 ± 0.25% and 93.971 ± 0.20% respectively at the end of 12 hr. It was suggested that increase in polymer concentration, the drug release from the prepared microspheres got retarded producing sustained release of lornoxicam. In-vitro drug release data obtained were fitted to various release kinetic models to access the suitable mechanism of drug release. Drug release from lornoxicam-loaded alginate-okra gum microspheres followed a pattern that resembled sustained release (Korsemeyer-Peppas model) (R2 = 0.9925 to 0.9951), and n ≤ 1 indicated anomalous diffusion (non-Fickian), supercase-II transport mechanism LSO4 (n = 1.039) over a period of 12 hour underlying in-vitro drug release. Moreover, zero order model (R2 = 0.9720 to 0.9949) were found closer to the best-fit Korsemeyer - Peppas model. In addition, the drug release from lornoxicam-loaded alginate-ethyl cellulose microspheres also follow Korsemeyer-Peppas model (R2 = 0.9741 to 0.9973) with near to Hixson-Crowell model (R2 = 0.9953 to 0.9985) and n < 1 indicated non-Fickian diffusion or anomalous transport mechanism. Moreover, first order model with non-Fickian diffusion mechanism (R2 = 0.9788 to 0.9918) were found closer to the best-fit Korsemeyer-Peppas model/ Hixson-Crowell model. Conclusion: The present study conclusively demonstrates the feasibility of effectively encapsulating Lornoxicam into natural polymer (okra gum) and synthetic polymer (ethyl cellulose) to form potential sustained drug delivery system. In conclusion, drug release over a period of 12 hrs, could be achieved from these prepared microspheres. A pH-dependent swelling and degradation of the optimized microspheres were also observed, which indicates that these microspheres could potentially be used for intestinal drug delivery.


Author(s):  
Hemant K S Yadav ◽  
Shahnaz Usman ◽  
KVRNS Ramesh ◽  
Quamrul Islam

The aim of the current study was to explore the possibility of preparing pellets of okra gum using extrusion and spheronization technique. Different formulations were prepared by altering the concentration of okra gum. Metronidazole was chosen as a model drug. The pellets were smooth and spherical in shape. FTIR and DSC spectra’s confirmed that there was no interaction between drug and polymer. The pellets were free-flowing and exhibited satisfactory flow characteristics along with good mechanical strength. Okra gum was able to control the drug release and around 90% drug was released in 8hrs. Pellets showed increase in swelling as the concentration of gum was increased. Mucoadhesion study exhibited that the prepared pellets had good mucoadhesive strength.


1994 ◽  
Vol 90 (4) ◽  
pp. 715-721 ◽  
Author(s):  
A. Rascio ◽  
C. Platani ◽  
G. Scalfati ◽  
A. Tonti ◽  
N. Di Fonzo

2017 ◽  
Vol 2 (3) ◽  

Melanoma is the most dangerous type of skin cancer in which mostly damaged unpaired DNA starts mutating abnormally and staged an unprecedented proliferation of epithelial skin to form a malignant tumor. In epidemics of skin, pigment-forming melanocytes of basal cells start depleting and form uneven black or brown moles. Melanoma can further spread all over the body parts and could become hard to detect. In USA Melanoma kills an estimated 10,130 people annually. This challenge can be succumbed by using the certain anti-cancer drug. In this study design, cyclophosphamide were used as a model drug. But it has own limitation like mild to moderate use may cause severe cytopenia, hemorrhagic cystitis, neutropenia, alopecia and GI disturbance. This is a promising challenge, which is caused due to the increasing in plasma drug concentration above therapeutic level and due to no rate limiting steps involved in formulation design. In this study, we tried to modify drug release up to threefold and extended the release of drug by preparing and designing niosome based topical gel. In the presence of Dichloromethane, Span60 and cholesterol, the initial niosomes were prepared using vacuum evaporator. The optimum percentage drug entrapment efficacy, zeta potential, particle size was found to be 72.16%, 6.19mV, 1.67µm.Prepared niosomes were further characterized using TEM analyzer. The optimum batch of niosomes was selected and incorporated into topical gel preparation. Cold inversion method and Poloxamer -188 and HPMC as core polymers, were used to prepare cyclophosphamide niosome based topical gel. The formula was designed using Design expert 7.0.0 software and Box-Behnken Design model was selected. Almost all the evaluation parameters were studied and reported. The MTT shows good % cell growth inhibition by prepared niosome based gel against of A375 cell line. The drug release was extended up to 20th hours. Further as per ICH Q1A (R2), guideline 6 month stability studies were performed. The results were satisfactory and indicating a good formulation approach design was achieved for Melanoma treatment.


2012 ◽  
Vol 1 (8) ◽  
pp. 186 ◽  
Author(s):  
Urmi Das ◽  
Mohammad Salim Hossain

<p>Sustained release Carvedilol matrix tablets constituting Kollidon SR were developed in this study in an attempt to investigate the effect of release modifiers on the release profile of Carvedilol from matrix. Three matrix tablet formulations were prepared by direct compression of Kollidon SR in combination with release modifier (HPMC and Microcrystalline Cellulose) and magnesium stearate. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release. Incorporation of HPMC in the matrix tablet prolonged the release of drug but incorporation of Microcrystalline Cellulose showed superimposable release pattern with an initial burst effect as confirmed by mean dissolution time and Higuchi release rate data. After 7 hours of dissolution, Carvedilol release from the matrix systems were 91.42%, 83.41%, from formulation F1 and F2 respectively. Formulation F3 exhibited 100 % release at 4 hours. All the tablet formulations showed acceptable pharmaco-technical properties and complied with the in-house specifications for tablet weight variation, friability, hardness, thickness, and diameter. Prepared tablets also showed sustained release property for carvedilol. The drug release mechanism from the matrix tablets of F1 and F2 was found to be followed by Fickian and F3 by Non-Fickian mechanism.</p><p>DOI: <a href="http://dx.doi.org/10.3329/icpj.v1i8.11095">http://dx.doi.org/10.3329/icpj.v1i8.11095</a></p> <p>International Current Pharmaceutical Journal 2012, 1(8): 186-192</p>


2019 ◽  
Vol 1 (1) ◽  
pp. 7
Author(s):  
R Nahrowi ◽  
A Setiawan ◽  
Noviany Noviany ◽  
I Sukmana ◽  
S D Yuwono

Paclitaxel is one of the cancer drugs that often used. These drug kills cancer cells byinhibiting mitotic cycle. The efficiency of paclitaxel is increased by the use ofnanomaterials as a carrier of paclitaxel. Nanomaterials can enhance encapsulationefficiency, improve the drug release to the target cell following nanomaterialdegradation, and improve local accumulation of drug in the cell through endocytosisreceptor. Nanomaterial that often used forencapsulation of paclitaxel is a polymerderived from natural resources such as cellulose. The advantages of cellulose as acarrier of paclitaxel are nontoxic, biodegradable, and very abundant from varioussources. One of the potential sources of cellulose for drug delivery system is cassavabaggase.Keywords: Paclitaxel, encapsulation, cell viability, nanocellulose


Author(s):  
EL- Assal I. A. ◽  
Retnowati .

Objective of the present investigation was enthused by the possibility to develop solid lipid nanoparticles (SLNs) of hydrophilic drug acyclovir. Also study vitro and vivo drug delivery. Methods: Drug loaded SLNs (ACV-SLNs) were prepared by high pressure homogenization of aqueous surfactant solutions containing the drug-loaded lipids in the melted or in the solid state with formula optimization study (Different lipid concentration, drug loaded, homogenization / stirring speed and compritol 888ATO: drug ratio). ACV - SLN incorporated in cream base. The pH was evaluated and rheological study. Drug release was evaluated and compared with simple cream- drug, ACV – SLN with compritol 888ATO and marketed cream. The potential of SLN as the carrier for dermal delivery was studied. Results: Particle size analysis of SLNs prove small, smooth, spherical shape particle ranged from 150 to 200 nm for unloaded and from 330 to 444 nm for ACV loaded particles. The EE% for optimal formula is 72% with suitable pH for skin application. Rheological behavior is shear thinning and thixotropic. Release study proved controlled drug release for SLNs especially in formula containing compritol88 ATO. Stability study emphasized an insignificant change in SLNs properties over 6 month. In-vivo study showed significantly higher accumulation of ACV in stratum corneum, dermal layer, and receptor compartment compared with blank skin. Conclusion: AVC-loaded SLNs might be beneficial in controlling drug release, stable and improving dermal delivery of antiviral agent(s).


Author(s):  
Deshkar S. S. ◽  
Pore A. R.

Platelets play an important role in hemostasis during tissue injury, which blocks the defect and terminates blood loss. Platelet aggregation inhibitors are widely used in treatment of cardiovascular disorders and Peripheral arterial disease. Clopidogrel bisulphate and Cilostazol, are FDA approved BCS class II drugs, used in treatment of Platelet aggregation, peripheral arterial disease and intermittent claudication. The aim of the present study was to develop an immediate release pellets for combination of Clopidogrel bisulphate and Cilostazol using extrusion spheronization technique. The effects of spheronization speed(X1) and binder concentration (PVP K30) (X2), on size of pellets, disintegration time and drug release were studied using 32 full factorial design. The surface response and counter plot were drawn to facilitate an understanding of the contribution of the variables and their interaction. From the results, speed of spheronization of 1100 rpm and 5% concentration of PVP K30, were selected. In vitro drug release studies revealed more than 80% of clopidogrel bisulphate release and more than 75% of cilostazol release within 30 min of dissolution which complied with the pharmacopoeal limits. Film coated pellets did not show significant change in the drug release. DSC and FTIR studies revealed no interaction of drugs and excipient during pellet formulation. The pellet formulations of clopidogrel and cilostazol were found to be stable when stored at 40ºC±2ºC/ 75%RH±5%RH for 2 months. Conclusively, clopidogrel bisulphate and cilostazol pellet fixed dose combination could be successfully developed by design of experimentation and complied with pharmacopoeal limits.


Sign in / Sign up

Export Citation Format

Share Document