scholarly journals An Optical Power Divider Based on Mode Coupling Using GaN/Al2O3 for Underwater Communication †

Photonics ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 63 ◽  
Author(s):  
Retno Wigajatri Purnamaningsih ◽  
Nji Raden Poespawati ◽  
Tomy Abuzairi ◽  
Elhadj Dogheche

This paper details the design of a 1 × 8 optical power divider, using a gallium nitride (GaN) semiconductor on sapphire, which can be applied to underwater optical wireless communication. The design consists of nine parallel rectangular waveguides which are based on mode coupling phenomena. Analysis of the design was performed using the beam propagation method (BPM). The optimization was conducted using the 3D finite difference (FD)-BPM method with an optical signal input at the wavelength required for maritime application of λ = 0.45 µm. The signal was injected into the central waveguide. The results showed that at a propagation length of 1480 µm the optical power is divided into eight output beams with an excess loss of 0.46 dB and imbalance of 0.51 dB. The proposed design can be further developed and applied in future underwater communication technology.

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Retno W. Purnamaningsih ◽  
Nji R. Poespawati ◽  
Elhadj Dogheche

This paper reports design of a simple four-branch optical power splitter using five parallel rectangular waveguides coupling in a gallium-nitride (GaN) semiconductor/sapphire for telecommunication links. The optimisation was conducted using the 3D FD-BPM method for long wavelength optical communication. The result shows that, at propagation length of 925 μm, the optical power input was successfully split into four uniform output beams, each with 24% of total input power. It is also shown that the relative output power distribution is almost stable through the C-band range. At the operating wavelength of 1.55 μm, the proposed power splitter has an excess loss lower than 0.2 dB. This study demonstrates the opportunity to develop optical interconnections from UV-Visible to near IR wavelengths.


1995 ◽  
Vol 04 (02) ◽  
pp. 325-336 ◽  
Author(s):  
H. C. NEITZERT ◽  
C. CACCIATORE ◽  
D. CAMPI ◽  
C. RIGO

We report on the application of a self electro-optic effect device in waveguiding configuration for the generation of a wide variety of different nonlinear optical transfer functions. It makes use of the Wannier-Stark effect in an InGaAs/InP short period superlattice and operates at room temperature for TE-polarized light around 1.55 μm. In particular, optical bistability, optical signal-frequency multiplication and the operation as an optical power discriminator are demonstrated.


Author(s):  
Badar Muneer ◽  
Bhawani Shankar Chowdhry ◽  
Hima Zafar ◽  
Zahid Ali ◽  
Faisal Karim Shaikh

2019 ◽  
Vol 40 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Kulwinder Singh ◽  
Manjeet Singh Patterh ◽  
Manjit Singh Bhamrah

Abstract In this paper, dual-order bidirectional pumping schemes of distributed fiber Raman amplifier are compared with standard first-order pumping in wavelength division multiplexed optical transmission systems. The novel comparison analysis is carried out in terms of Optical signal-to-noise ratio and Q-factor, on-off gain and noise figure by varying optical input power and fiber lengths. The results indicate that dual-order schemes present 0.02 dB higher OSNR and 5 dB higher Q-factor in comparison to first-order pumping when input optical power is varied from −4 to 5 dBm. Similarly, there is 4 dB higher on-off gain with dual order comparatively to first order when fiber length varied from 10 to 100 km. However, there is degradation in noise figure and Q-factor due to DRBS noise with dual-order pumping when fiber length from 10 to 100 km. Further, the signal power evolutions along fiber length show that there is 5 dBm improvement for 100 km fiber. The novelty of the work is that comparative analysis exhibits improvement in OSNR, on-off gain and Q-factor using dual-order bidirectional pumping.


2020 ◽  
Vol 16 (5) ◽  
pp. 715-720
Author(s):  
Ali Elrashidi

Biomedical sensor that sense different molecules with a high refractive index sensitivity is proposed in this work. Plasmonic nanospiral antenna is mounted on a top surface of an optical fiber to reflect the incident optical signal back to the fiber. The reflected signal depends on the nanospiral antenna material, dimensions and the surrounding medium. Using streptavidin molecule, the nanospiral antenna have been simulated based on finite difference time domain method to optimize its dimensions. The optimum dimensions are 10 nm, 55 nm and 40 nm for inner-outer thicknesses and height respectively. The introduced biosensor can detect different molecules based on surface plasmonic resonance, which depends on the shifting of the peak wavelength according to the molecules type. The detected molecules are Streptavidin, Urease, Uricase molecules and Glucose oxidase and Cholesterol oxidase enzymes with a high sensitivity. The maximum refractive index sensitivity is obtained when sensing cholesterol oxidase molecules with 3028 nm/RIU at 3.58 μm peak wavelength. Figure of merit and quality factor are also calculated for all detected molecules. Finally, electric field and optical power, before and after binding, of the reflected signal are illustrated and discussed.


1984 ◽  
Vol 5 (1) ◽  
pp. 65-79 ◽  
Author(s):  
M. Belanger ◽  
G. L. Yip
Keyword(s):  

1980 ◽  
Vol 5 (10) ◽  
pp. 418 ◽  
Author(s):  
M. Imai ◽  
T. Ohashi ◽  
Y. Ohtsuka

Sign in / Sign up

Export Citation Format

Share Document