scholarly journals Tumor Phantom with Incorporated SERS Tags: Detectability in a Turbid Medium

Photonics ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 144
Author(s):  
Boris Khlebtsov ◽  
Daniil Bratashov ◽  
Andrey Burov ◽  
Nikolai Khlebtsov

Surface-enhanced Raman scattering (SERS) tags have proven to be excellent labels for tissue bioimaging because of their low interference from biological matrices, high photostability, and possibility for using as theranostic agents. Although SERS tags are widely used for the imaging of tumors in vivo, in practice, the low contrast of the tag accumulation in the tissue and strong light scattering can significantly affect their detectability. In this work, we studied these effects by using a phantom of tumor tissue with incorporated SERS tags. The phantom is a 2 mm sphere of calcium alginate with incorporated SERS tags at a concentration of 0.625 × 108–2 × 109 cm−3. To simulate the surrounding medium with differing turbidities, the phantom was placed in a 4 mm thick agarose gel containing intralipid at a concentration of 0–1%. SERS bioimaging was carried out using standard backscattering geometry with different light focusing conditions. We found that shielding the phantom with a turbid medium led not only to a decrease in detectability but also to a decrease in the apparent size of the imaging object. Our results can help develop more accurate algorithms for processing SERS data for bioimaging.

2019 ◽  
Vol 20 (18) ◽  
pp. 4346 ◽  
Author(s):  
Jiemei Ou ◽  
Zidan Zhou ◽  
Zhong Chen ◽  
Huijun Tan

Au nanoparticles (NPs) possess unique physicochemical and optical properties, showing great potential in biomedical applications. Diagnostic spectroscopy utilizing varied Au NPs has become a precision tool of in vitro and in vivo diagnostic for cancer and other specific diseases. In this review, we tried to comprehensively introduce the remarkable optical properties of Au NPs, including localized surfaces plasmon resonance (LSPR), surface-enhanced Raman scattering (SERS), and metal-enhanced fluorescence (MEF). Then, we highlighted the excellent works using Au NPs for optical diagnostic applications. Ultimately, the challenges and future perspective of using Au NPs for optical diagnostic were discussed.


2018 ◽  
Vol 25 (35) ◽  
pp. 4638-4652 ◽  
Author(s):  
Dionysia Tsoutsi ◽  
Marcos Sanles-Sobrido ◽  
Andreu Cabot ◽  
Pilar-Rivera Gil

This review overviews the impact in biomedicine of surface enhanced. Raman scattering motivated by the great potential we believe this technique has. We present the advantages and limitations of this technique relevant to bioanalysis in vitro and in vivo and how this technique goes beyond the state of the art of traditional analytical, labelling and healthcare diagnostic technologies.


2019 ◽  
Vol 10 ◽  
pp. 1016-1023 ◽  
Author(s):  
Vincenzo Amendola

The use of plasmonic nanotags based on the surface-enhanced Raman scattering (SERS) effect is highly promising for several applications in analytical chemistry, biotechnological assays and nanomedicine. To this end, a crucial parameter is the minimum number of SERS tags that allows for the collection of intense Raman signals under real operating conditions. Here, SERS Au nanotags (AuNTs) based on clustered gold nanoparticles are deposited on a substrate and analyzed in the same region using Raman spectroscopy and transmission electron microscopy. In this way, the Raman spectra and the surface density of the SERS tags are correlated directly, showing that 1 tag/µm2 is enough to generate an intense signal above the noise level at 633 nm with an excitation power of only 0.65 mW and an acquisition time of just 1 s with a 50× objective. The AuNT density can be even lower than 1 tag/µm2 when the acquisition time is extended to 10 s, but must be increased to 3 tags/µm2 when a 20× objective is employed under the same excitation conditions. In addition, in order to observe a linear response, it was found that 10 SERS AuNTs inside the probed area are required. These findings indicate that a better signal-to-noise ratio requires high-magnification optics, while linearity versus tag number can be improved by using low-magnification optics or a high tag density. In general the suitability of plasmonic SERS labels for ultrasensitive analytical and biomedical applications is evident.


The Analyst ◽  
2015 ◽  
Vol 140 (17) ◽  
pp. 5971-5980 ◽  
Author(s):  
E. A. Perets ◽  
A. S. D. S. Indrasekara ◽  
A. Kurmis ◽  
N. Atlasevich ◽  
L. Fabris ◽  
...  

Surface-enhanced Raman scattering (SERS) nano-tags with a carboxy-terminated PEG surface coating overcome non-specific aggregation when applied for the immunological detection and localization of proteinaceous binding media in art samples.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaohu Mi ◽  
Tingting Zhang ◽  
Baobao Zhang ◽  
Min Ji ◽  
Bowen Kang ◽  
...  

Plasmonic nanostructures with sharp tips are widely used for optical signal enhancement because of their strong light-confining abilities. These structures have a wide range of potential applications, for example, in sensing, bioimaging, and surface-enhanced Raman scattering. Au nanoparticles, which are important plasmonic materials with high photothermal conversion efficiencies in the visible to near-infrared region, have contributed greatly to the development of photothermal catalysis. However, the existing methods for synthesizing nanostructures with tips need the assistance of poly(vinylpyrrolidone), thiols, or biomolecules. This greatly hinders signal detection because of stubborn residues. Here, we propose an efficient binary surfactant–mediated method for controlling nanotip growth on Au nanoparticle surfaces. This avoids the effects of surfactants and can be used with other Au nanostructures. The Au architecture tip growth process can be controlled well by adjusting the ratio of hexadecyltrimethylammonium bromide to hexadecyltrimethylammonium chloride. This is due to the different levels of attraction between Br−/Cl− and Au3+ ions. The surface-enhanced Raman scattering and catalytic abilities of the synthesized nanoparticles with tips were evaluated by electromagnetic simulation and photothermal catalysis experiments (with 4-nitrothiophenol). The results show good potential for use in surface-enhanced Raman scattering applications. This method provides a new strategy for designing plasmonic photothermal nanostructures for chemical and biological applications.


2017 ◽  
Vol 36 (4) ◽  
Author(s):  
Anh H. Nguyen ◽  
Emily A. Peters ◽  
Zachary D. Schultz

AbstractSurface-enhanced Raman scattering (SERS) has become a powerful technique for trace analysis of biomolecules. The use of SERS-tags has evolved into clinical diagnostics; the enhancement of the intrinsic signal of biomolecules on SERS active materials shows tremendous promise for the analysis of biomolecules and potential biomedical assays. The detection of the


2013 ◽  
Vol 3 (3) ◽  
pp. 20120092 ◽  
Author(s):  
Xiaohu Xia ◽  
Weiyang Li ◽  
Yu Zhang ◽  
Younan Xia

Surface-enhanced Raman scattering (SERS) tags have been actively explored as a multiplexing platform for sensitive detection of biomolecules. Here, we report a new type of SERS tags that was fabricated by sequentially functionalizing dimers made of 50 nm Ag nanospheres with 4-mercaptobenzoic acid as the Raman reporter molecule, silica coating as a protective shell and antibody as a targeting ligand. These dimer-based tags give highly enhanced and reproducible Raman signals owing to the presence of a well-defined SERS hot spot at the junction between two Ag nanospheres in the dimer. The SERS enhancement factor (EF) of an individual dimer tag supported on a glass slide can reach a level as high as 4.3 × 10 6 . In comparison, the EFs dropped to 2.8 × 10 5 and 8.7 × 10 5 , respectively, when Ag nanospheres and nanocubes with sizes similar to the spheres in the dimer were used to fabricate the tags using similar procedures. The SERS signals from aqueous suspensions of the dimer-based tags also showed high intensity and good stability. Potential use of the dimer-based tags was demonstrated by imaging cancer cells overexpressing HER2 receptors with good specificity and high sensitivity.


Sign in / Sign up

Export Citation Format

Share Document