scholarly journals Magnetic Field Sensing Characteristics Based on Optical Microfiber Coupler Interferometer and Magnetic Fluid

Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 364
Author(s):  
Shangpeng Qin ◽  
Junyang Lu ◽  
Minwei Li ◽  
Yang Yu ◽  
Junbo Yang ◽  
...  

In this paper, a novel and compact magnetic field sensor based on the combination of an optical microfiber coupler interferometer (OMCI) and magnetic fluid (MF) is proposed. The sensor is made up of an OMCI cover with polydimethylsiloxane (PDMS) and MF, and it uses MF as a material for adjusting the magnetic refractive index and magnetic field response. The sensing characteristics of the sensor are analyzed, and the experimental test is carried out. Under the condition of the same OMC waist length, the sensor sensitivity increases with the decrease of the OMC waist radius. The sensitivity of 54.71 and 48.21 pm/Oe was obtained when the OMC waist radius was set at 3.5 and 4 μm, respectively. In addition, we also tested the sensing response time and vector response characteristics of the sensor. At the same time, we discuss the demodulation idea about the cross-sensitivity of the magnetic field and temperature. The sensor has the advantages of high sensitivity, low cost, small size, optimized performance, and convenient integration. It has huge application potential in the fields of navigation and industrial intelligent manufacturing.

2019 ◽  
Vol 33 (31) ◽  
pp. 1950380
Author(s):  
Jie Wang ◽  
Zhen Zhang ◽  
Shuguang Li ◽  
Shun Wang

A novel micro-structured fiber magnetic field sensor based on magnetic fluid (MF) filling is proposed. The air hole radius in the cladding of fiber is reduced from inner layer to outer layer, and the numerical analysis is performed by the finite element method (FEM). For the [Formula: see text]-pol mode, the proposed sensor has an average sensitivity of 960.61 pm/Oe, and for the [Formula: see text]-pol mode, the average sensitivity can reach 884.85 pm/Oe. The sensor has the advantages of small size and high sensitivity and is competitive in magnetic field sensors.


Optik ◽  
2021 ◽  
pp. 168234
Author(s):  
Li Zeng ◽  
Xiaoyan Sun ◽  
Limu Zhang ◽  
Youwang Hu ◽  
Ji’an Duan

2011 ◽  
Vol 105-107 ◽  
pp. 2255-2258
Author(s):  
Ming Xuan He ◽  
Xin Lu ◽  
Xin Chen ◽  
Xing Ling ◽  
Yuan Li ◽  
...  

Quantitative dimensional metrologies of Nano/microstructures are increasingly demanded following the rapid developments in, for instance, semiconductor and precision engineering industry, microsystem technology and materials science. In the recent years, coordinate measuring machines (CMMs) have become versatile and widespread metrology tools. Probing system is an important component of a CMM. A probing system based on a high accurate positioning transducer is crucial for micro and nano metrology. This paper presents a probing system based on a variable micro-capacitive transducer which has advantages of simple structure, low cost, high sensitivity, overload ability, excellent dynamic response characteristics, etc. The structure of variable capacitor was designed and optimized by means of finite element method (FEM), and fabricated by surface micromachining technology.


2021 ◽  
Author(s):  
Shangpeng Qin ◽  
YangJun Lu ◽  
Yang Yu ◽  
Minwei Li ◽  
Junbo Yang ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yi Huang ◽  
Tingyun Wang ◽  
Chuanlu Deng ◽  
Xiaobei Zhang ◽  
Fufei Pang ◽  
...  

Fiber-optic magnetic field sensing is an important method of magnetic field monitoring, which is essential for the safety of civil infrastructures, especially for power plant. We theoretically and experimentally demonstrated an optical fiber magnetic field sensor based on a single-mode-multimode-single-mode (SMS) structure immersed into the magnetic fluid (MF). The length of multimode section fiber is determined based on the self-image effect through the simulation. Due to variation characteristics of the refractive index and absorption coefficient of MF under different magnetic fields, an effective method to improve the sensitivity of SMS fiber structure is realized based on the intensity modulation method. This sensor shows a high sensitivity up to 0.097 dB/Oe and a high modulation depth up to 78% in a relatively linear range, for the no-core fiber (NCF) with the diameter of 125 μm and length of 59.8 mm as the multimode section. This optical fiber sensor possesses advantages of low cost, ease of fabrication, high sensitivity, simple structure, and compact size, with great potential applications in measuring the magnetic field.


1997 ◽  
Vol 488 ◽  
Author(s):  
Tadashi Nagasawa ◽  
Kenji Murakami ◽  
Kenzo Watanabe

AbstractIn order to realize a high-sensitivity, low temperature operable NO2gas sensor, thin films of at-form copper phthalocyanine (α-CuPc) have been deposited by vacuum sublimation. In this study, we have attempted to improve the gas-sensing characteristics through a modification of the film microstructure. Firstly, the gas sensitivity is remarkably increased by an insertion of higher-sensitive layer (vanadyl Pc film) between the α-CuPc film and the glass substrate in the low gas concentration range. Secondly, a reversibility in cycles of gas doping and dedoping is improved by film deposition on hydrofluoric acid-treated substrate. It is found from atomic force microscope analyses that this phenomenon may be closely related to a modification of the film microstructure.


2014 ◽  
Vol 5 ◽  
pp. 1261-1267 ◽  
Author(s):  
Anh-Thu Thi Do ◽  
Hong Thai Giang ◽  
Thu Thi Do ◽  
Ngan Quang Pham ◽  
Giang Truong Ho

The effect of palladium doping of zinc oxide nanoparticles on the photoluminescence (PL) properties and hydrogen sensing characteristics of gas sensors is investigated. The PL intensity shows that the carrier dynamics coincides with the buildup of the Pd-related green emission. The comparison between the deep level emission and the gas sensing response characteristics allows us to suggest that the dissociation of hydrogen takes place at PdZn-vacancies ([Pd 2+(4d9)]). The design of this sensor allows for a continuous monitoring in the range of 0–100% LEL H2 concentration with high sensitivity and selectivity.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5100 ◽  
Author(s):  
Wei ◽  
Liu ◽  
Mallik ◽  
Farrel ◽  
Wu ◽  
...  

In this paper we propose and investigate a novel magnetic field sensor based on a Tri-microfiber coupler combined with magnetic fluid and a fiber Bragg grating (FBG) in a ring. A sensitivity of 1306 pm/mT was experimentally demonstrated in the range of magnetic fields from 0 to 15 mT. The reflection peak in the output spectrum associated with the FBG serves as a reference point allowing to avoid ambiguity in determining the spectral shift induced by the magnetic field. Due to its high sensitivity at low magnetic fields, the proposed structure could be of high interest in low field biosensing applications that involve a magnetic field, such as magnetic manipulation or separation of biomolecules.


2019 ◽  
Vol 10 ◽  
pp. 247-255 ◽  
Author(s):  
Kun Ren ◽  
Xiaobin Ren ◽  
Yumeng He ◽  
Qun Han

A magnetic-field sensor with self-reference characteristic based on metal–dielectric–metal (MDM) plasmonic waveguides and a magnetic fluid (MF) is proposed and theoretically investigated. Independent dual resonances are supported by the coupled resonator–waveguide system. The physical mechanisms of dual resonances are analyzed by the temporal coupled-mode theory. The transmission response to an external magnetic field is explored by using the remarkable tunability of the refractive index of the MF. Based on the different dependence of two resonances on the external field, a magnetic-field sensor with self-reference characteristic is achieved. The magnetic-field nanosensor shows an excellent performance with a high sensitivity of 27 pm/Oe, i.e., 270 pm/mT. The proposed sensor takes advantage of the refractive-index tunability of the MF and the compactness of the MDM waveguide structure. This research may open new opportunities to design nanoscale magnetic sensors with good performance.


Sign in / Sign up

Export Citation Format

Share Document