Design and Fabrication of a Micro-Capacitor for Nano Probing System

2011 ◽  
Vol 105-107 ◽  
pp. 2255-2258
Author(s):  
Ming Xuan He ◽  
Xin Lu ◽  
Xin Chen ◽  
Xing Ling ◽  
Yuan Li ◽  
...  

Quantitative dimensional metrologies of Nano/microstructures are increasingly demanded following the rapid developments in, for instance, semiconductor and precision engineering industry, microsystem technology and materials science. In the recent years, coordinate measuring machines (CMMs) have become versatile and widespread metrology tools. Probing system is an important component of a CMM. A probing system based on a high accurate positioning transducer is crucial for micro and nano metrology. This paper presents a probing system based on a variable micro-capacitive transducer which has advantages of simple structure, low cost, high sensitivity, overload ability, excellent dynamic response characteristics, etc. The structure of variable capacitor was designed and optimized by means of finite element method (FEM), and fabricated by surface micromachining technology.

2022 ◽  
Vol 9 ◽  
Author(s):  
Jinhua Shao ◽  
Chao Wang ◽  
Yiling Shen ◽  
Jinlei Shi ◽  
Dongqing Ding

Tea is a popular beverage all around the world. Tea composition, quality monitoring, and tea identification have all been the subject of extensive research due to concerns about the nutritional value and safety of tea intake. In the last 2 decades, research into tea employing electrochemical biosensing technologies has received a lot of interest. Despite the fact that electrochemical biosensing is not yet the most widely utilized approach for tea analysis, it has emerged as a promising technology due to its high sensitivity, speed, and low cost. Through bibliometric analysis, we give a systematic survey of the literature on electrochemical analysis of tea from 1994 to 2021 in this study. Electrochemical analysis in the study of tea can be split into three distinct stages, according to the bibliometric analysis. After chromatographic separation of materials, electrochemical techniques were initially used only as a detection tool. Many key components of tea, including as tea polyphenols, gallic acid, caffeic acid, and others, have electrochemical activity, and their electrochemical behavior is being investigated. High-performance electrochemical sensors have steadily become a hot research issue as materials science, particularly nanomaterials, and has progressed. This review not only highlights these processes, but also analyzes and contrasts the relevant literature. This evaluation also provides future views in this area based on the bibliometric findings.


2012 ◽  
Vol 572 ◽  
pp. 154-159
Author(s):  
Kai Fu Mi ◽  
Jie Zhang ◽  
Hong Bo Li ◽  
Sheng Hui Jia ◽  
Yu Gang Chu

The vibration influence on the quality of strip for 2180mm six-high cold tandem rolling mill is discussed. The abnormal frequency of mill is analysis by spot examination. The methods of numerical computation and finite element method simulation by the ANSYS are adopted to set up dynamic model of six-high mill. At the same time, the natural frequency of mill and the response to mill at different excitation is calculated. Comparing the analysis results with the data from the experiment, the finite element models presented in the thesis were proved to be an efficient and valid way to simulate actual working conditions.


Author(s):  
Hachmi Ben Dhia ◽  
Nadia Elkhodja ◽  
François-Xavier Roux

The goal of this work is the development of a numerical methodology for flexible and low-cost computation and/or design of complex structures that might have been obtained by a multialteration of a sound simple structure. The multimodel Arlequin framework is herein used to meet the flexibility and low-costs requirements. A preconditioned FETI-like solver is adapted to the solution of the discrete mixed Arlequin problems obtained by using the Finite Element Method. Enlightening numerical results are given.


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 364
Author(s):  
Shangpeng Qin ◽  
Junyang Lu ◽  
Minwei Li ◽  
Yang Yu ◽  
Junbo Yang ◽  
...  

In this paper, a novel and compact magnetic field sensor based on the combination of an optical microfiber coupler interferometer (OMCI) and magnetic fluid (MF) is proposed. The sensor is made up of an OMCI cover with polydimethylsiloxane (PDMS) and MF, and it uses MF as a material for adjusting the magnetic refractive index and magnetic field response. The sensing characteristics of the sensor are analyzed, and the experimental test is carried out. Under the condition of the same OMC waist length, the sensor sensitivity increases with the decrease of the OMC waist radius. The sensitivity of 54.71 and 48.21 pm/Oe was obtained when the OMC waist radius was set at 3.5 and 4 μm, respectively. In addition, we also tested the sensing response time and vector response characteristics of the sensor. At the same time, we discuss the demodulation idea about the cross-sensitivity of the magnetic field and temperature. The sensor has the advantages of high sensitivity, low cost, small size, optimized performance, and convenient integration. It has huge application potential in the fields of navigation and industrial intelligent manufacturing.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 359
Author(s):  
Limin Ren ◽  
Moyue Cong ◽  
Yisong Tan

The conventional magnetoelastic resonant sensor suffers from a low detecting sensitivity problem. In this study, an hourglass-shaped magnetoelastic resonant sensor was proposed, analyzed, fabricated, and tested. The hourglass-shaped magnetoelastic resonant sensor was composed of an hourglass and a narrow ribbon in the middle. The hourglass and the narrow ribbon increased the detection sensitivity by reducing the connecting stress. The resonant frequency of the sensor was investigated by the finite element method. The proposed sensor was fabricated and experiments were carried out. The tested resonance frequency agreed well with the simulated one. The maximum trust sensitivity of the proposed sensor was 37,100 Hz/strain. The power supply and signal transmission of the proposed sensor were fulfilled via magnetic field in a wireless and passive way due to the magnetostrictive effect. Parametric studies were carried out to investigate the influence of the hourglass shape on the resonant frequency and the output voltage. The hourglass-shaped magnetoelastic resonant sensor shows advantages of high sensitivity, a simple structure, easy fabrication, passiveness, remoteness, and low cost.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 135 ◽  
Author(s):  
Yijian Huang ◽  
Shuhui Liu ◽  
Lichao Zhang ◽  
Yiping Wang ◽  
Ying Wang

A high sensitivity fiber-optic sensor based on self-imaging effect in a hollow-core capillary waveguide (HCCW) is presented for sensing applications. The sensor is composed of a section of HCCW fusion spliced between single mode fibers (SMFs). The self-imaging effect in the HCCW is investigated with different fiber lengths and arc-fusion parameters. By infiltrating the hollow core with index matching liquids, the peak wavelength of the proposed device shifts towards longer wavelengths. The temperature and refractive index (RI) responses of the sensor are studied systematically. When temperature is increased from 25 °C to 75 °C, the temperature sensitivity of the device can be improved significantly with the infiltrated structure, and reaches −0.49 nm/°C, compared with that of the un-filled device, which is 9.8 pm/°C. For the RI response, the liquid-filled structure achieves sensitivity of 12,005 nm/RIU in the range between 1.448 and 1.450, slightly higher than the 11,920 nm/RIU achieved by the un-filled one. The proposed sensor exhibits the advantages of simple structure, high sensitivity and low cost, which may find potential applications in physical and chemical sensing.


Author(s):  
Antonia Perju ◽  
Nongnoot Wongkaew

AbstractLateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA’s performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance.


Sign in / Sign up

Export Citation Format

Share Document