scholarly journals On the Non-Local Surface Plasmons’ Contribution to the Casimir Force between Graphene Sheets

Physics ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 22-31
Author(s):  
Yan Francescato ◽  
Simon R. Pocock ◽  
Vincenzo Giannini

Herein we demonstrate the dramatic effect of non-locality on the plasmons which contribute to the Casimir forces, with a graphene sandwich as a case study. The simplicity of this system allowed us to trace each contribution independently, as we observed that interband processes, although dominating the forces at short separations, are poorly accounted for in the framework of the Dirac cone approximation alone, and should be supplemented with other descriptions for energies higher than 2.5 eV. Finally, we proved that distances smaller than 200 nm, despite being extremely relevant to state-of-the-art measurements and nanotechnology applications, are inaccessible with closed-form response function calculations at present.

Author(s):  
Ginestra Bianconi

Defining the centrality of nodes and layers in multilayer networks is of fundamental importance for a variety of applications from sociology to biology and finance. This chapter presents the state-of-the-art centrality measures able to characterize the centrality of nodes, the influences of layers or the centrality of replica nodes in multilayer and multiplex networks. These centrality measures include modifications of the eigenvector centrality, Katz centrality, PageRank centrality and Communicability to the multilayer network scenario. The chapter provides a comprehensive description of the research of the field and discusses the main advantages and limitations of the different definitions, allowing the readers that wish to apply these techniques to choose the most suitable definition for his or her case study.


Author(s):  
Serge Reynaud ◽  
Astrid Lambrecht

The Casimir force is an effect of quantum vacuum field fluctuations, with applications in many domains of physics. The ideal expression obtained by Casimir, valid for perfect plane mirrors at zero temperature, has to be modified to take into account the effects of the optical properties of mirrors, thermal fluctuations, and geometry. After a general introduction to the Casimir force and a description of the current state of the art for Casimir force measurements and their comparison with theory, this chapter presents pedagogical treatments of the main features of the theory of Casimir forces for one-dimensional model systems and for mirrors in three-dimensional space.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1862
Author(s):  
Alexandros-Georgios Chronis ◽  
Foivos Palaiogiannis ◽  
Iasonas Kouveliotis-Lysikatos ◽  
Panos Kotsampopoulos ◽  
Nikos Hatziargyriou

In this paper, we investigate the economic benefits of an energy community investing in small-scale photovoltaics (PVs) when local energy trading is operated amongst the community members. The motivation stems from the open research question on whether a community-operated local energy market can enhance the investment feasibility of behind-the-meter small-scale PVs installed by energy community members. Firstly, a review of the models, mechanisms and concepts required for framing the relevant concepts is conducted, while a clarification of nuances at important terms is attempted. Next, a tool for the investigation of the economic benefits of operating a local energy market in the context of an energy community is developed. We design the local energy market using state-of-the-art formulations, modified according to the requirements of the case study. The model is applied to an energy community that is currently under formation in a Greek municipality. From the various simulations that were conducted, a series of generalizable conclusions are extracted.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edward Wheatcroft

Abstract A scoring rule is a function of a probabilistic forecast and a corresponding outcome used to evaluate forecast performance. There is some debate as to which scoring rules are most appropriate for evaluating forecasts of sporting events. This paper focuses on forecasts of the outcomes of football matches. The ranked probability score (RPS) is often recommended since it is ‘sensitive to distance’, that is it takes into account the ordering in the outcomes (a home win is ‘closer’ to a draw than it is to an away win). In this paper, this reasoning is disputed on the basis that it adds nothing in terms of the usual aims of using scoring rules. A local scoring rule is one that only takes the probability placed on the outcome into consideration. Two simulation experiments are carried out to compare the performance of the RPS, which is non-local and sensitive to distance, the Brier score, which is non-local and insensitive to distance, and the Ignorance score, which is local and insensitive to distance. The Ignorance score outperforms both the RPS and the Brier score, casting doubt on the value of non-locality and sensitivity to distance as properties of scoring rules in this context.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 225
Author(s):  
Giuseppe Bimonte ◽  
Thorsten Emig

The principles of the electromagnetic fluctuation-induced phenomena such as Casimir forces are well understood. However, recent experimental advances require universal and efficient methods to compute these forces. While several approaches have been proposed in the literature, their connection is often not entirely clear, and some of them have been introduced as purely numerical techniques. Here we present a unifying approach for the Casimir force and free energy that builds on both the Maxwell stress tensor and path integral quantization. The result is presented in terms of either bulk or surface operators that describe corresponding current fluctuations. Our surface approach yields a novel formula for the Casimir free energy. The path integral is presented both within a Lagrange and Hamiltonian formulation yielding different surface operators and expressions for the free energy that are equivalent. We compare our approaches to previously developed numerical methods and the scattering approach. The practical application of our methods is exemplified by the derivation of the Lifshitz formula.


2002 ◽  
Vol 17 (06n07) ◽  
pp. 798-803 ◽  
Author(s):  
C. VILLARREAL ◽  
R. ESQUIVEL-SIRVENT ◽  
G. H. COCOLETZI

The Casimir force between inhomogeneous slabs that exhibit a band-like structure is calculated. The slabs are made of basic unit cells each made of two layers of different materials. As the number of unit cells increases the Casimir force between the slabs changes, since the reflectivity develops a band-like structure characterized by frequency regions of high reflectivity. This is also evident in the difference of the local density of states between free and boundary distorted vacuum, that becomes maximum at frequencies corresponding to the band gaps. The calculations are restricted to vacuum modes with wave vectors perpendicular to the slabs.


Sign in / Sign up

Export Citation Format

Share Document