scholarly journals Fluctuating Number of Energy Levels in Mixed-Type Lemon Billiards

Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 888-902
Author(s):  
Črt Lozej ◽  
Dragan Lukman ◽  
Marko Robnik

In this paper, the fluctuation properties of the number of energy levels (mode fluctuation) are studied in the mixed-type lemon billiards at high lying energies. The boundary of the lemon billiards is defined by the intersection of two circles of equal unit radius with the distance 2B between the centers, as introduced by Heller and Tomsovic. In this paper, the case of two billiards, defined by B=0.1953,0.083, is studied. It is shown that the fluctuation of the number of energy levels follows the Gaussian distribution quite accurately, even though the relative fraction of the chaotic part of the phase space is only 0.28 and 0.16, respectively. The theoretical description of spectral fluctuations in the Berry–Robnik picture is discussed. Also, the (golden mean) integrable rectangular billiard is studied and an almost Gaussian distribution is obtained, in contrast to theory expectations. However, the variance as a function of energy, E, behaves as E, in agreement with the theoretical prediction by Steiner.

1973 ◽  
Vol 28 (3-4) ◽  
pp. 538-540 ◽  
Author(s):  
D. J. Simms

AbstractThis is a report on some new relations and analogies between classical mechanics and quantum mechanics which arise out of the work of Kostant and Souriau. Topics treated are i) the role of symmetry groups; ii) the notion of elementary system and the role of Casimir invariants; iii) energy levels; iv) quantisation in terms of geometric data on the classical phase space. Some applications are described.


1997 ◽  
Vol 11 (07) ◽  
pp. 805-849 ◽  
Author(s):  
R. Aurich ◽  
A. Bäcker ◽  
F. Steiner

The mode-fluctuation distribution P(W) is studied for chaotic as well as for non-chaotic quantum billiards. This statistic is discussed in the broader framework of the E(k,L) functions being the probability of finding k energy levels in a randomly chosen interval of length L, and the distribution of n(L), where n(L) is the number of levels in such an interval, and their cumulants ck(L). It is demonstrated that the cumulants provide a possible measure for the distinction between chaotic and non-chaotic systems. The vanishing of the normalized cumulants Ck, k ≥ 3, implies a Gaussian behaviour of P(W), which is realized in the case of chaotic systems, whereas non-chaotic systems display non-vanishing values for these cumulants leading to a non-Gaussian behaviour of P(W). For some integrable systems there exist rigorous proofs of the non-Gaussian behaviour which are also discussed. Our numerical results and the rigorous results for integrable systems suggest that a clear fingerprint of chaotic systems is provided by a Gaussian distribution of the mode-fluctuation distribution P(W).


1969 ◽  
Vol 179 (4) ◽  
pp. 1100-1104 ◽  
Author(s):  
P. C. Sood

1983 ◽  
Vol 74 ◽  
pp. 141-152 ◽  
Author(s):  
J.D. Hadjidemetriou ◽  
S. Ichtiaroglou

AbstractThe stability of the asteroid orbits has been studied by the method of surface of section. Families of simple symmetric periodic orbits of the asteroid and their stability have been computed and this served as a guide for the selection of the energy levels for the surface of section. In this way all possible cases for the structure of phase space have been obtained. It was found that the region in phase space around the resonant orbits at the resonances 1/3, 3/5, 5/7,.... is unstable, but small stability regions of doubly symmetric periodic orbits near the above resonances are also present. At the resonances 1/2, 2/3, 3/4, .... it was found that there exist two separate regions in phase space at about the same resonance 1/2, 2/3, 3/4,...., respectively, one being stable and the other unstable. At certain energy levels only the stable region appears. The above results are consistent with the observed distribution of the asteroids.


2017 ◽  
Vol 14 (10) ◽  
pp. 1750141 ◽  
Author(s):  
Slimane Zaim ◽  
Hakim Guelmamene ◽  
Yazid Delenda

We obtain exact solutions to the two-dimensional (2D) Klein–Gordon oscillator in a non-commutative (NC) complex phase space to first order in the non-commutativity parameter. We derive the exact NC energy levels and show that the energy levels split to [Formula: see text] levels. We find that the non-commutativity plays the role of a magnetic field interacting automatically with the spin of a particle induced by the non-commutativity of complex phase space. The effect of the non-commutativity parameter on the thermal properties is discussed. It is found that the dependence of the heat capacity [Formula: see text] on the NC parameter gives rise to a negative quantity. Phenomenologically, this effectively confirms the presence of the effects of self-gravitation induced by the non-commutativity of complex phase space.


2009 ◽  
Vol 24 (14) ◽  
pp. 2655-2663 ◽  
Author(s):  
PULAK RANJAN GIRI

We study the quantum mechanics of a system with inverse square potential in noncommutative space. Both the coordinates and momenta are considered to be noncommutative, which breaks the original so(2, 1) symmetry. The energy levels and eigenfunctions are obtained. The generators of the so(2, 1) algebra are also studied in noncommutative phase space and the commutators are calculated, which shows that the commutators obtained in noncommutative space is not closed. However the commutative limit Θ, [Formula: see text] for the commutators smoothly go to the standard so(2, 1) algebra.


2021 ◽  
Vol 63 (6) ◽  
pp. 065008
Author(s):  
H Hezaveh ◽  
Z S Qu ◽  
M J Hole ◽  
R L Dewar

2020 ◽  
Vol 23 (2) ◽  
pp. 172-191 ◽  
Author(s):  
Marko Robnik

We review the basic aspects of quantum chaos (wave chaos) in mixed-type Hamiltonian systems with divided phase space, where regular regions containing the invariant tori coexist with the chaotic regions. The quantum evolution of classically chaotic bound systems does not possess the sensitive dependence on initial conditions, and thus no chaotic behaviour occurs, as the motion is always almost periodic. However, the study of the stationary solutions of the Schrödinger equation in the quantum phase space (Wigner functions or Husimi functions) reveals precise analogy of the structure of the classical phase portrait. In classically integrable regions the spectral (energy) statistics is Poissonian, while in the ergodic chaotic regions the random matrix theory applies. If we have the mixed-type classical phase space, in the semiclassical limit (short wavelength approximation) the spectrum is composed of Poissonian level sequence supported by the regular part of the phase space, and chaotic sequences supported by classically chaotic regions, being statistically independent of each other, as described by the Berry-Robnik distribution. In quantum systems with discrete energy spectrum the Heisenberg time tH = πℏ/ΔE, where ΔE is the mean level spacing (inverse energy level density), is an important time scale. The classical transport time scale tT (transport time) in relation to the Heisenberg time scale tH (their ratio is the parameter α = tH / tT ) determines the degree of localization of the chaotic eigenstates, whose measure A is based on the information entropy. We show that A is linearly related to the normalized inverse participation ratio. We study the structure of quantum localized chaotic eigenstates (their Wigner and Husimi functions) and the distribution of localization measure A. The latter one is well described by the beta distribution, if there are no sticky regions in the classical phase space. Otherwise, they have a complex nonuniversal structure. We show that the localized chaotic states display the fractional power-law repulsion between the nearest energy levels in the sense that the probability density (level spacing distribution) to find successive levels on a distance S goes like ∝ S β for small S , where 0 ≤ β ≤ 1, and β = 1 corresponds to completely extended states, and β = 0 to the maximally localized states. β goes from 0 to 1 when α goes from 0 to ∞, β is a function of <A>, as demonstrated in the quantum kicked rotator, the stadium billiard, and a mixed-type billiard.


Sign in / Sign up

Export Citation Format

Share Document