scholarly journals Root Endophytism by Pochonia chlamydosporia Affects Defense-Gene Expression in Leaves of Monocot and Dicot Hosts under Multiple Biotic Interactions

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 718
Author(s):  
Shimaa R. T. Tolba ◽  
Laura C. Rosso ◽  
Isabella Pentimone ◽  
Mariantonietta Colagiero ◽  
Mahmoud M. A. Moustafa ◽  
...  

A study was carried out on the effect of the root endophytic fungus Pochonia chlamydosporia on plant systemic signal of defense related genes during fungal or nematode parasitism. Different biotic stress factors were examined, inoculating roots of dicot and monocot hosts with the endophyte, and measuring the expression of defense genes in leaves. A first greenhouse assay was carried out on expression of PAL, PIN II, PR1 and LOX D in leaves of tomato cv Tondino inoculated with Phytophthora infestans (CBS 120920), inoculating or not the roots of infected plants with P. chlamydosporia DSM 26985. In a second assay, plants of banana (Musa acuminata cv Grand Naine) were artificially infected with Fusarium oxysporum f. sp. cubense Tropical race 4 (TR4) and inoculated or not with DSM 26985. In a further experiment, banana plants were inoculated or not with P. chlamydosporia plus juveniles of the root knot nematode (RKN) Meloidogyne incognita. A similar assay was also carried out in vitro with adults and juveniles of the lesion nematode Pratylenchus goodeyi. Differential expression of the defense genes examined was observed for all plant-stress associations, indicative of early, upward systemic signals induced by the endophyte. Changes in expression profiles included a 5-fold down-regulation of PIN II at 2 dai in leaves of tomato plants treated with P. infestans and/or P. chlamydosporia, and the up-regulation of PAL by the endophyte alone, at 2 and 7 dai. In the TR4 assay, PR1 was significantly up-regulated at 7 dai in banana leaves, but only in the P. chlamydosporia treated plants. At 10 dai, PIN II expression was significantly higher in leaves of plants inoculated only with TR4. The banana-RKN assay showed a PR1 expression significantly higher than controls at 4 and 7 dai in plants inoculated with P. chlamydosporia alone, and a down-regulation at 4 dai in leaves of plants also inoculated with RKN, with a PR1 differential up-regulation at 10 dai. Pratylenchus goodeyi down-regulated PIN at 21 dai, with or without the endophyte, as well as PAL but only in presence of P. chlamydosporia. When inoculated alone, the endophyte up-regulated PR1 and LOX. The gene expression patterns observed in leaves suggest specific and time-dependent relationships linking host plants and P. chlamydosporia in presence of biotic stress factors, functional to a systemic, although complex, activation of defense genes.

2008 ◽  
Vol 74 (5) ◽  
pp. 1583-1597 ◽  
Author(s):  
Anne N. Reid ◽  
Reenu Pandey ◽  
Kiran Palyada ◽  
Hemant Naikare ◽  
Alain Stintzi

ABSTRACT Campylobacter jejuni causes food- and waterborne gastroenteritis, and as such it must survive passage through the stomach in order to reach the gastrointestinal tract. While little is known about how C. jejuni survives transit through the stomach, its low infectious dose suggests it is well equipped to sense and respond to acid shock. In this study, the transcriptional profile of C. jejuni NCTC 11168 was obtained after the organism was exposed to in vitro and in vivo (piglet stomach) acid shock. The observed down-regulation of genes encoding ribosomal proteins likely reflects the need to reshuffle energy toward the expression of components required for survival. Acid shock also caused C. jejuni to up-regulate genes involved in stress responses. These included heat shock genes as well as genes involved in the response to oxidative and nitrosative stress. A role for the chaperone clpB in acid resistance was confirmed in vitro. Some genes showed expression patterns that were markedly different in vivo and in vitro, which likely reflects the complexity of the in vivo environment. For instance, transit through the stomach was characterized by up-regulation of genes that encode products that are involved in the use of nitrite as a terminal electron acceptor and down-regulation of genes that are involved in capsular polysaccharide expression. In conclusion, this study has enabled us to understand how C. jejuni modulates gene expression in response to acid shock in vitro and to correlate this with gene expression profiles of C. jejuni as it transits through the host stomach.


2021 ◽  
Vol 22 (4) ◽  
pp. 1901
Author(s):  
Brielle Jones ◽  
Chaoyang Li ◽  
Min Sung Park ◽  
Anne Lerch ◽  
Vimal Jacob ◽  
...  

Mesenchymal stromal cells derived from the fetal placenta, composed of an amnion membrane, chorion membrane, and umbilical cord, have emerged as promising sources for regenerative medicine. Here, we used next-generation sequencing technology to comprehensively compare amniotic stromal cells (ASCs) with chorionic stromal cells (CSCs) at the molecular and signaling levels. Principal component analysis showed a clear dichotomy of gene expression profiles between ASCs and CSCs. Unsupervised hierarchical clustering confirmed that the biological repeats of ASCs and CSCs were able to respectively group together. Supervised analysis identified differentially expressed genes, such as LMO3, HOXA11, and HOXA13, and differentially expressed isoforms, such as CXCL6 and HGF. Gene Ontology (GO) analysis showed that the GO terms of the extracellular matrix, angiogenesis, and cell adhesion were significantly enriched in CSCs. We further explored the factors associated with inflammation and angiogenesis using a multiplex assay. In comparison with ASCs, CSCs secreted higher levels of angiogenic factors, including angiogenin, VEGFA, HGF, and bFGF. The results of a tube formation assay proved that CSCs exhibited a strong angiogenic function. However, ASCs secreted two-fold more of an anti-inflammatory factor, TSG-6, than CSCs. In conclusion, our study demonstrated the differential gene expression patterns between ASCs and CSCs. CSCs have superior angiogenic potential, whereas ASCs exhibit increased anti-inflammatory properties.


2008 ◽  
Vol 5 (2) ◽  
Author(s):  
Li Teng ◽  
Laiwan Chan

SummaryTraditional analysis of gene expression profiles use clustering to find groups of coexpressed genes which have similar expression patterns. However clustering is time consuming and could be diffcult for very large scale dataset. We proposed the idea of Discovering Distinct Patterns (DDP) in gene expression profiles. Since patterns showing by the gene expressions reveal their regulate mechanisms. It is significant to find all different patterns existing in the dataset when there is little prior knowledge. It is also a helpful start before taking on further analysis. We propose an algorithm for DDP by iteratively picking out pairs of gene expression patterns which have the largest dissimilarities. This method can also be used as preprocessing to initialize centers for clustering methods, like K-means. Experiments on both synthetic dataset and real gene expression datasets show our method is very effective in finding distinct patterns which have gene functional significance and is also effcient.


Reproduction ◽  
2012 ◽  
Vol 144 (5) ◽  
pp. 569-582 ◽  
Author(s):  
Lisa Shaw ◽  
Sharon F Sneddon ◽  
Daniel R Brison ◽  
Susan J Kimber

Identification and characterisation of differentially regulated genes in preimplantation human embryonic development are required to improve embryo quality and pregnancy rates in IVF. In this study, we examined expression of a number of genes known to be critical for early development and compared expression profiles in individual preimplantation human embryos to establish any differences in gene expression in fresh compared to frozen–thawed embryos used routinely in IVF. We analysed expression of 19 genes by cDNA amplification followed by quantitative real-time PCR in a panel of 44 fresh and frozen–thawed human preimplantation embryos. Fresh embryos were obtained from surplus early cleavage stage embryos and frozen–thawed embryos from cryopreserved 2PN embryos. Our aim was to determine differences in gene expression between fresh and frozen–thawed human embryos, but we also identified differences in developmental expression patterns for particular genes. We show that overall gene expression among embryos of the same stage is highly variable and our results indicate that expression levels between groups did differ and differences in expression of individual genes was detected. Our results show that gene expression from frozen–thawed embryos is more consistent when compared with fresh, suggesting that cryopreserved embryos may represent a reliable source for studying the molecular events underpinning early human embryo development.


2005 ◽  
Vol 289 (4) ◽  
pp. L545-L553 ◽  
Author(s):  
Joseph Zabner ◽  
Todd E. Scheetz ◽  
Hakeem G. Almabrazi ◽  
Thomas L. Casavant ◽  
Jian Huang ◽  
...  

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial chloride channel regulated by phosphorylation. Most of the disease-associated morbidity is the consequence of chronic lung infection with progressive tissue destruction. As an approach to investigate the cellular effects of CFTR mutations, we used large-scale microarray hybridization to contrast the gene expression profiles of well-differentiated primary cultures of human CF and non-CF airway epithelia grown under resting culture conditions. We surveyed the expression profiles for 10 non-CF and 10 ΔF508 homozygote samples. Of the 22,283 genes represented on the Affymetrix U133A GeneChip, we found evidence of significant changes in expression in 24 genes by two-sample t-test ( P < 0.00001). A second, three-filter method of comparative analysis found no significant differences between the groups. The levels of CFTR mRNA were comparable in both groups. There were no significant differences in the gene expression patterns between male and female CF specimens. There were 18 genes with significant increases and 6 genes with decreases in CF relative to non-CF samples. Although the function of many of the differentially expressed genes is unknown, one transcript that was elevated in CF, the KCl cotransporter (KCC4), is a candidate for further study. Overall, the results indicate that CFTR dysfunction has little direct impact on airway epithelial gene expression in samples grown under these conditions.


2004 ◽  
Vol 17 (1) ◽  
pp. 11-20 ◽  
Author(s):  
David M. Mutch ◽  
Pascale Anderle ◽  
Muriel Fiaux ◽  
Robert Mansourian ◽  
Karine Vidal ◽  
...  

The ATP-binding cassette (ABC) family of proteins comprise a group of membrane transporters involved in the transport of a wide variety of compounds, such as xenobiotics, vitamins, lipids, amino acids, and carbohydrates. Determining their regional expression patterns along the intestinal tract will further characterize their transport functions in the gut. The mRNA expression levels of murine ABC transporters in the duodenum, jejunum, ileum, and colon were examined using the Affymetrix MuU74v2 GeneChip set. Eight ABC transporters (Abcb2, Abcb3, Abcb9, Abcc3, Abcc6, Abcd1, Abcg5, and Abcg8) displayed significant differential gene expression along the intestinal tract, as determined by two statistical models (a global error assessment model and a classic ANOVA, both with a P < 0.01). Concordance with semiquantitative real-time PCR was high. Analyzing the promoters of the differentially expressed ABC transporters did not identify common transcriptional motifs between family members or with other genes; however, the expression profile for Abcb9 was highly correlated with fibulin-1, and both genes share a common complex promoter model involving the NFκB, zinc binding protein factor (ZBPF), GC-box factors SP1/GC (SP1F), and early growth response factor (EGRF) transcription binding motifs. The cellular location of another of the differentially expressed ABC transporters, Abcc3, was examined by immunohistochemistry. Staining revealed that the protein is consistently expressed in the basolateral compartment of enterocytes along the anterior-posterior axis of the intestine. Furthermore, the intensity of the staining pattern is concordant with the expression profile. This agrees with previous findings in which the mRNA, protein, and transport function of Abcc3 were increased in the rat distal intestine. These data reveal regional differences in gene expression profiles along the intestinal tract and demonstrate that a complete understanding of intestinal ABC transporter function can only be achieved by examining the physiologically distinct regions of the gut.


2004 ◽  
Vol 16 (8) ◽  
pp. 763 ◽  
Author(s):  
Han-Seung Kang ◽  
Chae-Kwan Lee ◽  
Ju-Ran Kim ◽  
Seong-Jin Yu ◽  
Sung-Goo Kang ◽  
...  

In the present study, differential gene expression in the uteri of ovariectomised (OVX) and pro-oestrous rats (OVX v. pro-oestrus pair) was investigated using cDNA expression array analysis. Differential uterine gene expression in OVX rats and progesterone (P4)-injected OVX rats (OVX v. OVX + P4 pair) was also examined. The uterine gene expression profiles of these two sets of animals were also compared for the effects of P4 treatment. RNA samples were extracted from uterine tissues and reverse transcribed in the presence of [α32P]-dATP. Membrane sets of rat arrays were hybridised with cDNA probe sets. Northern blot analysis was used to validate the relative gene expression patterns obtained from the cDNA array. Of the 1176 cDNAs examined, 23 genes showed significant (>two-fold) changes in expression in the OVX v. pro-oestrus pair. Twenty of these genes were upregulated during pro-oestrus compared with their expression in the OVX rat uterus. In the OVX v. OVX + P4 pair, 22 genes showed significant (>two-fold) changes in gene expression. Twenty of these genes were upregulated in the OVX + P4 animals. The genes for nuclear factor I–XI, afadin, neuroligin 2, semaphorin Z, calpain 4, cyclase-associated protein homologue, thymosin β-4X and p8 were significantly upregulated in the uteri of the pro-oestrus and OVX + P4 rats of both experimental pairs compared with the OVX rat uteri. These genes appear to be under the control of P4. One of the most interesting findings of the present study is the unexpected and marked expression of the neuroligin 2 gene in the rat uterus. This gene is expressed at high levels in the central nervous system and acts as a nerve cell adhesion factor. According to Northern blot analysis, neuroligin 2 gene expression was higher during the pro-oestrus and metoestrus stages than during the oestrus and dioestrus stages of the oestrous cycle. In addition, neuroligin 2 mRNA levels were increased by both 17β-oestradiol (E2) and P4, although P4 administration upregulated gene expression to a greater extent than injection of E2. These results indicate that neuroligin 2 gene expression in the rat uterus is under the control of both E2 and P4, which are secreted periodically during the oestrous cycle.


2020 ◽  
Author(s):  
Alexander Calderwood ◽  
Jo Hepworth ◽  
Shannon Woodhouse ◽  
Lorelei Bilham ◽  
D. Marc Jones ◽  
...  

AbstractThe timing of the floral transition affects reproduction and yield, however its regulation in crops remains poorly understood. Here, we use RNA-Seq to determine and compare gene expression dynamics through the floral transition in the model species Arabidopsis thaliana and the closely related crop Brassica rapa. A direct comparison of gene expression over time between species shows little similarity, which could lead to the inference that different gene regulatory networks are at play. However, these differences can be largely resolved by synchronisation, through curve registration, of gene expression profiles. We find that different registration functions are required for different genes, indicating that there is no common ‘developmental time’ to which Arabidopsis and B. rapa can be mapped through gene expression. Instead, the expression patterns of different genes progress at different rates. We find that co-regulated genes show similar changes in synchronisation between species, suggesting that similar gene regulatory sub-network structures may be active with different wiring between them. A detailed comparison of the regulation of the floral transition between Arabidopsis and B. rapa, and between two B. rapa accessions reveals different modes of regulation of the key floral integrator SOC1, and that the floral transition in the B. rapa accessions is triggered by different pathways, even when grown under the same environmental conditions. Our study adds to the mechanistic understanding of the regulatory network of flowering time in rapid cycling B. rapa under long days and highlights the importance of registration methods for the comparison of developmental gene expression data.


Author(s):  
Jayashree Sahana ◽  
Thomas J. Corydon ◽  
Markus Wehland ◽  
Marcus Krüger ◽  
Sascha Kopp ◽  
...  

In this study, we evaluated changes in focal adhesions (FAs) in two types of breast cancer cell (BCC) lines (differentiated MCF-7 and the triple-negative MDA-MB-231 cell line) exposed to simulated microgravity (s-μg) created by a random positioning machine (RPM) for 24 h. After exposure, the BCC changed their growth behavior and exhibited two phenotypes in RPM samples: one portion of the cells grew as a normal two-dimensional monolayer [adherent (AD) BCC], while the other portion formed three-dimensional (3D) multicellular spheroids (MCS). After 1 h and 30 min (MDA-MB-231) and 1 h 40 min (MCF-7), the MCS adhered completely to the slide flask bottom. After 2 h, MDA-MB-231 MCS cells started to migrate, and after 6 h, a large number of the cells had left the MCS and continued to grow in a scattered pattern, whereas MCF-7 cells were growing as a confluent monolayer after 6 h and 24 h. We investigated the genes associated with the cytoskeleton, the extracellular matrix and FAs. ACTB, TUBB, FN1, FAK1, and PXN gene expression patterns were not significantly changed in MDA-MB-231 cells, but we observed a down-regulation of LAMA3, ITGB1 mRNAs in AD cells and of ITGB1, TLN1 and VCL mRNAs in MDA-MB-231 MCS. RPM-exposed MCF-7 cells revealed a down-regulation in the gene expression of FAK1, PXN, TLN1, VCL and CDH1 in AD cells and PXN, TLN and CDH1 in MCS. An interaction analysis of the examined genes involved in 3D growth and adhesion indicated a central role of fibronectin, vinculin, and E-cadherin. Live cell imaging of eGFP-vinculin in MCF-7 cells confirmed these findings. β-catenin-transfected MCF-7 cells revealed a nuclear expression in 1g and RPM-AD cells. The target genes BCL9, MYC and JUN of the Wnt/β-catenin signaling pathway were differentially expressed in RPM-exposed MCF-7 cells. These findings suggest that vinculin and β-catenin are key mediators of BCC to form MCS during 24 h of RPM-exposure.


Sign in / Sign up

Export Citation Format

Share Document