scholarly journals Azospirillum baldaniorum Sp245 Induces Physiological Responses to Alleviate the Adverse Effects of Drought Stress in Purple Basil

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1141
Author(s):  
Lorenzo Mariotti ◽  
Andrea Scartazza ◽  
Maurizio Curadi ◽  
Piero Picciarelli ◽  
Annita Toffanin

Azospirillum spp. are plant growth-promoting rhizobacteria (PGPR) that exert beneficial effects on plant growth and yield of agronomically important plant species. The aim of this study was to investigate the effects of a root treatment with Azospirillum baldaniorum Sp245 on hormones in xylem sap and physiological performance in purple basil (Ocimum basilicum L. cv. Red Rubin) plants grown under well-watered conditions and after removing water. Treatments with A. baldaniorum Sp245 included inoculation with viable cells (1ˑ107 CFU mL–1) and addition of two doses of filtered culture supernatants (non-diluted 1ˑ108 CFU mL–1, and diluted 1:1). Photosynthetic activity, endogenous level of hormones in xylem sap (salicylic acid, jasmonic acid, and abscisic acid), leaf pigments, leaf water potential, water-use efficiency (WUE), and drought tolerance were determined. Fluorescence and gas exchange parameters, as well as leaf water potential, showed that the highest dose of filtered culture supernatant improved both photosynthetic performance and leaf water status during water removal, associated with an increase in total pigments. Moreover, gas exchange analysis and carbon isotope discrimination found this bacterial treatment to be the most effective in inducing an increase of intrinsic and instantaneous WUE during water stress. We hypothesize that the benefits of bacterial treatments based on A. baldaniorum Sp245 are strongly correlated with the synthesis of phytohormones and the induction of plant-stress tolerance in purple basil.

2004 ◽  
Vol 16 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Carlos Henrique Britto de Assis Prado ◽  
Zhang Wenhui ◽  
Manuel Humberto Cardoza Rojas ◽  
Gustavo Maia Souza

Predawn leaf water potential (psipd) and morning values of leaf gas exchange, as net photosynthesis (A), stomatal conductance (gs), transpiration (E), and morning leaf water potential (psimn) were determined seasonally in 22 woody cerrado species growing under natural conditions. Despite the lower mean values of psipd in the dry season (-0.35 ± 0.23 MPa) compared to the wet season (-0.08 ± 0.03 MPa), the lowest psipd in the dry season (-0.90 ± 0.00 MPa) still showed a good nocturnal leaf water status recovery for all species studied through out the year. Mean gs values dropped 78 % in the dry season, when the vapor pressure of the air was 80% greater than in the wet season. This reduction in gs led to an average reduction of 33% in both A and E, enabling the maintainance of water use efficiency (WUE) during the dry season. Network connectance analysis detected a change in the relationship between leaf gas exchange and psimn in the dry season, mainly between gs-E and E-WUE. A slight global connectance value increase (7.25 %) suggested there was no severe water stress during the dry season. Multivariate analysis showed no link between seasonal response and species deciduousness, suggesting similar behavior in remaining leaves for most of the studied species concerning leaf gas exchange and psimn under natural drought.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 311
Author(s):  
Vegas Riffle ◽  
Nathaniel Palmer ◽  
L. Federico Casassa ◽  
Jean Catherine Dodson Peterson

Unlike most crop industries, there is a strongly held belief within the wine industry that increased vine age correlates with quality. Considering this perception could be explained by vine physiological differences, the purpose of this study was to evaluate the effect of vine age on phenology and gas exchange parameters. An interplanted, dry farmed, Zinfandel vineyard block under consistent management practices in the Central Coast of California was evaluated over two consecutive growing seasons. Treatments included Young vines (5 to 12 years old), Control (representative proportion of young to old vines in the block), and Old vines (40 to 60 years old). Phenology, leaf water potential, and gas exchange parameters were tracked. Results indicated a difference in phenological progression after berry set between Young and Old vines. Young vines progressed more slowly during berry formation and more rapidly during berry ripening, resulting in Young vines being harvested before Old vines due to variation in the timing of sugar accumulation. No differences in leaf water potential were found. Young vines had higher mid-day stomatal conductance and tended to have higher mid-day photosynthetic rates. The results of this study suggest vine age is a factor in phenological timing and growing season length.


1984 ◽  
Vol 102 (3) ◽  
pp. 687-693 ◽  
Author(s):  
Alejandra Paez ◽  
H. Hellmers ◽  
B. R. Strain

SummaryIf atmospheric carbon dioxide concentration continues to increase, plant growth and crop yield could be affected. New Yorker and Better Boy cultivars of tomato (Lycopersicon esculentum) were used to investigate possible intraspecific variation in the response of crop species to increased CO2. Because precipitation and temperature are predicted to change with the increasing atmospheric CO2 concentration, the response of the two cultivars to the interaction between CO2 and water stress was also examined. Seeds of the two cultivars were germinated and grown under controlled environmental conditions, in either 350 or 675 μ1 CO2/1.The plant water status of the two cultivars was inherently different but was little affected by the CO2 concentration when the plants were well watered. When water was withheld for 5 days the total leaf water potential and osmotic potential decreased in both CO2 treatments but less rapidly in high CO2 than in low. Under low CO2 total leaf water potential decreased to a lower value than osmotic potential. The differences were due, at least in part, to the reduced stomatal conductance and transpiration rate under high CO2.Increased CO2 ameliorated the detrimental effects of drought stress on plant growth. The results indicate that increased CO2 could differentially affect the relative drought resistance of species cultivars.


2017 ◽  
Vol 44 (11) ◽  
pp. 1134 ◽  
Author(s):  
Rachael H. Nolan ◽  
Kendal A. Fairweather ◽  
Tonantzin Tarin ◽  
Nadia S. Santini ◽  
James Cleverly ◽  
...  

Partitioning of water resources amongst plant species within a single climate envelope is possible if the species differ in key hydraulic traits. We examined 11 bivariate trait relationships across nine woody species found in the Ti-Tree basin of central Australia. We found that species with limited access to soil moisture, evidenced by low pre-dawn leaf water potential, displayed anisohydric behaviour (e.g. large seasonal fluctuations in minimum leaf water potential), had greater sapwood density and lower osmotic potential at full turgor. Osmotic potential at full turgor was positively correlated with the leaf water potential at turgor loss, which was, in turn, positively correlated with the water potential at incipient stomatal closure. We also observed divergent behaviour in two species of Mulga, a complex of closely related Acacia species which range from tall shrubs to low trees and dominate large areas of arid and semiarid Australia. These Mulga species had much lower minimum leaf water potentials and lower specific leaf area compared with the other seven species. Finally, one species, Hakea macrocarpa A.Cunn ex.R.Br., had traits that may allow it to tolerate seasonal dryness (through possession of small specific leaf area and cavitation resistant xylem) despite exhibiting cellular water relations that were similar to groundwater-dependent species. We conclude that traits related to water transport and leaf water status differ across species that experience differences in soil water availability and that this enables a diversity of species to exist in this low rainfall environment.


1991 ◽  
Vol 116 (3) ◽  
pp. 405-411 ◽  
Author(s):  
Peter Nitzsche ◽  
Gerald A. Berkowitz' ◽  
Jack Rabin

The objective of this research was to develop an effective antitranspirant formulation for reducing transplant shock (transitory water stress) in bell pepper (Capsicm annuum L.) seedlings. A formulation with a paraffin wax emulsion (Folicote at 5%) and a spreader/sticker type surfactant (Biofilm at 0.5%) was effective as an antitranspirant. This formulation was less phytotoxic than other formulations tested. Application of the formulation led to increased leaf water potential (Ψ w) i in transplanted seedlings for several days as compared with untreated transplants. When this, (relatively) nonphytotoxic formulation was used in a field study for 1 year, increased seedling Ψ w during a period of imposed water stress led to less leaf abscission and increased plant growth throughout the growing season. Chemical names used: alkylarylpolyethoxyethanol (Biofilm).


HortScience ◽  
2006 ◽  
Vol 41 (2) ◽  
pp. 410-413 ◽  
Author(s):  
Toshio Shibuya ◽  
Ryoko Terakura ◽  
Yoshiaki Kitaya ◽  
Makoto Kiyota

Application of a low-relative-humidity treatment (LHT) to seedlings can reduce water stress on cuttings harvested from the seedlings, after the cuttings are planted. Effects of illumination during LHT and LHT duration on leaf water potential and leaf conductance in cucumber (Cucumis sativus L.) seedlings used as the model plant material and on growth of harvested cuttings were investigated to determine optimal LHT conditions. The seedlings received LHT for 12 or 24 h in a lighted or dark growth chamber at air temperatures of 28 to 31 °C and relative humidity of 12% to 25%. Cuttings including a foliage leaf and two cotyledons were harvested by cutting the hypocotyl of the seedlings immediately after the treatment, and then the cuttings were planted in vermiculite medium. Four days after planting, the total fresh weight of the cuttings from seedlings that had received LHT in the lighted chamber was 2.2 times that of cuttings from seedlings that had not received LHT, whereas the total fresh weight of those that had received LHT in the dark increased by 1.3 to 1.8 times. Significant effects of illumination during LHT were also observed in the transpiration rate and growth of the cuttings, harvested following the treatment, after they were planted. By varying LHT duration, it was also found that leaf water potential and leaf conductance of the seedlings decreased as LHT duration increased up to 18 h. Thus, illumination during LHT increased the growth of cuttings taken following the treatment, and optimal treatment duration of around 18 h was estimated from the seedlings' leaf conductance and leaf water potential.


1991 ◽  
Vol 18 (6) ◽  
pp. 661 ◽  
Author(s):  
J Lloyd ◽  
T Trochoulias ◽  
R Ensbey

Diurnal patterns of stomatal conductance (gs) and leaf water potential (Ψ1) were determined for leaves on irrigated and non-irrigated 5-year-old Macadamia integrifolia trees over a 4-month period from September to December 1989. An empirical model for stomatal conductance was developed for irrigated trees using relationships to photon irradiance (I), leaf temperature (T1) and vapour mole fraction difference (D). This model accounted for 69% of the variance in gs, and was not improved by the inclusion of Ψ1 as an independent variable. Fitted parameters led to the effective prediction of gs for untried combinations of environmental variables. By using a simple expression to link leaf water potential to transpiration rate (E), the model was extended to prediction of Ψ1 from measurements of I, T1 and D. Stornatal conductances were significantly lower on non-irrigated trees after a 2-month dry period. Lower stornatal conductances were not accompanied by more negative Ψ1 indicating that soil rather than leaf water status may control gs in macadamia trees under non-irrigated conditions.


1979 ◽  
Vol 15 (4) ◽  
pp. 377-383 ◽  
Author(s):  
M. V. K. Sivakumar ◽  
S. M. Virmani

SUMMARYThe pressure-chamber technique has been used for the first time to measure leaf-water potentials in chickpea under field conditions. Available soil-water contents at different depths for irrigated and non-irrigated crops are presented along with the diurnal variation in leaf-water status, to show that pressure-chamber measurements correspond closely with available soil water. Leaf-water potential has also shown differences in leaf-water status among different cultivars. The rapidity and ease with which measurements can be made in the field make the technique suitable for quick measurements of leaf-water status for chickpea.


1982 ◽  
Vol 62 (2) ◽  
pp. 317-330 ◽  
Author(s):  
T. KANNANGARA ◽  
R. C. DURLEY ◽  
G. M. SIMPSON ◽  
D. G. STOUT

This study was undertaken to investigate the nature of hormonal changes in relation to drought stress in two cultivars of Sorghum bicolor L. Moench. Two cultivars, M–35 and NK300, were grown in a field plot protected by a rain shelter. Plants in one soil compartment were stressed by withholding water while those in another (controls) were irrigated frequently. Levels of the plant hormones abscisic acid (ABA), phaseic acid (PA) and indole-3-acetic acid (IAA) measured by high-performance liquid chromatography (HPLC) were determined in the youngest leaves of control and stressed plants at intervals throughout the growth cycle. Plant height, senescence, and leaf water status were also determined. Leaf water potential (ψw) and solute potential (ψs) were reduced in both cultivars by drought stress; values for M–35 plants were lower than NK300. Leaf senescence was higher in M–35 plants and was promoted by stress in both cultivars. Cultivar M–35 behaved as a drought-tolerant plant whereas cultivar NK300 behaved more like a drought avoider. ABA levels were higher in M–35 control plants than in corresponding NK300 plants and levels in both cultivars followed seasonal changes in leaf water potential. Under drought stress, ABA levels increased between 1.5 and 2 times in both cultivars with the largest increases occurring during the vegetative stage in M–35 and during the flowering stage for NK300. PA levels in both cultivars were higher in stressed than in control plants. PA levels in M–35 plants were relatively low and constant throughout the life cycle, whereas in NK300, levels were high until shortly before flowering. IAA levels were higher in NK300 than in M–35 plants, particularly during the vegetative stage. Under drought stress, IAA levels were reduced in both cultivars with a more pronounced reduction in NK300. The high level of ABA in the more drought-tolerant cultivar M–35 was associated with low leaf ψw and ψs and high leaf senescence. On the other hand, in the drought avoider, NK300, high levels of IAA and PA were associated with high leaf ψw and ψs. It is concluded that these cultivars, which differ in their response to drought stress, can be distinguished by their leaf hormone levels.


1989 ◽  
Vol 16 (5) ◽  
pp. 429 ◽  
Author(s):  
IE Henson ◽  
CR Jensen ◽  
NC Turner

Changes in the content of endogenous abscisic acid (ABA) were followed in glasshouse experiments during stomatal closure induced by drought in leaves of lupin (Lupinus cosentinii Guss. cv. Eregulla) and wheat (Triticum aestivum L. cvv. Gamenya and Warigal), species which differ in stomatal sensitivity to changes in leaf water potential. Increases in bulk leaf ABA concentration were closely correlated with decreases in leaf conductance in both species. In lupin, substantial increases in ABA and decreases in conductance occurred over a very narrow range of leaf water potential. ABA concentrations in wheat leaves were highly negatively correlated with bulk leaf turgor, but there was no significant relationship between ABA and turgor in lupin. However, ABA accumulated progressively in the leaves of both species as soil water content decreased. Stomatal closure in lupin could be induced by supplying exogenous ABA to detached leaves via the transpiration stream at concentrations of 10-4 to 10-2 mol m-3 of (+)-ABA. Abaxial stomata closed more readily than those on the adaxial surface in response to both drought and applied ABA. Stomatal response to ABA was not affected by the presence of the cytokinin zeatin, and zeatin by itself had no effect on conductance. When treatments designed to reduce endogenous cytokinin concentrations were imposed (prolonged leaf detachment or prior drought), stomatal response to low concentrations of ABA was enhanced. However, such treatments did not significantly change the stomatal response to high ABA concentrations, nor affect the stomatal conductance of leaves supplied with water alone. It is concluded that drought-induced stomatal closure could be mediated by ABA in both wheat and lupin, despite the initially small change in leaf water status in the latter species.


Sign in / Sign up

Export Citation Format

Share Document