scholarly journals Coffee Disease Visualization and Classification

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1257
Author(s):  
Milkisa Yebasse ◽  
Birhanu Shimelis ◽  
Henok Warku ◽  
Jaepil Ko ◽  
Kyung Joo Cheoi

Deep learning architectures are widely used in state-of-the-art image classification tasks. Deep learning has enhanced the ability to automatically detect and classify plant diseases. However, in practice, disease classification problems are treated as black-box methods. Thus, it is difficult to trust the model that it truly identifies the region of the disease in the image; it may simply use unrelated surroundings for classification. Visualization techniques can help determine important areas for the model by highlighting the region responsible for the classification. In this study, we present a methodology for visualizing coffee diseases using different visualization approaches. Our goal is to visualize aspects of a coffee disease to obtain insight into what the model “sees” as it learns to classify healthy and non-healthy images. In addition, visualization helped us identify misclassifications and led us to propose a guided approach for coffee disease classification. The guided approach achieved a classification accuracy of 98% compared to the 77% of naïve approach on the Robusta coffee leaf image dataset. The visualization methods considered in this study were Grad-CAM, Grad-CAM++, and Score-CAM. We also provided a visual comparison of the visualization methods.

2017 ◽  
Vol 8 (2) ◽  
pp. 244-249 ◽  
Author(s):  
D. Oppenheim ◽  
G. Shani

Many plant diseases have distinct visual symptoms which can be used to identify and classify them correctly. This paper presents a potato disease classification algorithm which leverages these distinct appearances and the recent advances in computer vision made possible by deep learning. The algorithm uses a deep convolutional neural network training it to classify the tubers into five classes, four diseases classes and a healthy potato class. The database of images used in this study, containing potatoes of different shapes, sizes and diseases, was acquired, classified, and labelled manually by experts. The models were trained over different train-test splits to better understand the amount of image data needed to apply deep learning for such classification tasks.


Agriculture is the backbone and plays a vital role in many Asian countries. Farmers mainly depend on their agricultural produce for their living. A report says one-third of the farmers income account’s for the agricultural loss which is primarily due to plant diseases. To combat this farmers are in need of a early plant disease identification mechanism. Observation of individual plants in the farm for detecting the disease is labor-intensive and time consuming work, if the farm is vast and multiple plants are cultivated then it’s even worse. To solve such issues, current technologies like the Internet of Things (IoT) and artificial intelligence (AI) and Machine Learning (ML) are used to predict the diseases more effectively. Farmers usually detect plant diseases with the help of images captured manually and analyzed separately by experts. The proposed system renders an efficient solution for detecting multiple diseases in several plant varieties. The system is designed to detect and recognize several plant varieties, specifically pepper, grapes, and strawberry. The proposed system discovers various plant’s various diseases based on the inputs obtained by capturing images from a built-in camera present in the Autonomous rover. The rover also record’s it’s GPS location and makes a map of the entire farm traced and checked by the robot. The images are processed and are classified into their respective categories using deep learning algorithms. Convolutional neural networks the powerful methodology for image classification is the underlying principle applied. The deep learning model’s architecture namely, VGG16 and InceptionResNetV2, are used to train the model. These models are primarily made of convolutional layers. On testing, we recorded am accuracy of 93.21% was obtained from VGG16, and 95.24% from InceptionResNetV2.


2019 ◽  
Vol 109 (6) ◽  
pp. 1083-1087 ◽  
Author(s):  
Dor Oppenheim ◽  
Guy Shani ◽  
Orly Erlich ◽  
Leah Tsror

Many plant diseases have distinct visual symptoms, which can be used to identify and classify them correctly. This article presents a potato disease classification algorithm that leverages these distinct appearances and advances in computer vision made possible by deep learning. The algorithm uses a deep convolutional neural network, training it to classify the tubers into five classes: namely, four disease classes and a healthy potato class. The database of images used in this study, containing potato tubers of different cultivars, sizes, and diseases, was acquired, classified, and labeled manually by experts. The models were trained over different train-test splits to better understand the amount of image data needed to apply deep learning for such classification tasks. The models were tested over a data set of images taken using standard low-cost RGB (red, green, and blue) sensors and were tagged by experts, demonstrating high classification accuracy. This is the first article to report the successful implementation of deep convolutional networks, popular in object identification, to the task of disease identification in potato tubers, showing the potential of deep learning techniques in agricultural tasks.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 939 ◽  
Author(s):  
Marko Arsenovic ◽  
Mirjana Karanovic ◽  
Srdjan Sladojevic ◽  
Andras Anderla ◽  
Darko Stefanovic

Plant diseases cause great damage in agriculture, resulting in significant yield losses. The recent expansion of deep learning methods has found its application in plant disease detection, offering a robust tool with highly accurate results. The current limitations and shortcomings of existing plant disease detection models are presented and discussed in this paper. Furthermore, a new dataset containing 79,265 images was introduced with the aim to become the largest dataset containing leaf images. Images were taken in various weather conditions, at different angles, and daylight hours with an inconsistent background mimicking practical situations. Two approaches were used to augment the number of images in the dataset: traditional augmentation methods and state-of-the-art style generative adversarial networks. Several experiments were conducted to test the impact of training in a controlled environment and usage in real-life situations to accurately identify plant diseases in a complex background and in various conditions including the detection of multiple diseases in a single leaf. Finally, a novel two-stage architecture of a neural network was proposed for plant disease classification focused on a real environment. The trained model achieved an accuracy of 93.67%.


Algorithms ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 7 ◽  
Author(s):  
Michael Mesfin Tadesse ◽  
Hongfei Lin ◽  
Bo Xu ◽  
Liang Yang

Suicide ideation expressed in social media has an impact on language usage. Many at-risk individuals use social forum platforms to discuss their problems or get access to information on similar tasks. The key objective of our study is to present ongoing work on automatic recognition of suicidal posts. We address the early detection of suicide ideation through deep learning and machine learning-based classification approaches applied to Reddit social media. For such purpose, we employ an LSTM-CNN combined model to evaluate and compare to other classification models. Our experiment shows the combined neural network architecture with word embedding techniques can achieve the best relevance classification results. Additionally, our results support the strength and ability of deep learning architectures to build an effective model for a suicide risk assessment in various text classification tasks.


2020 ◽  
pp. 438-442
Author(s):  
Rajasekaran Thangaraj ◽  
Pandiyan P ◽  
Vishnu Kumar Kaliappan ◽  
Anandamurugan S ◽  
Indupriya P

Plant diseases are the essential thing which decreases the quantity as well quality in agricultural field. As a result, the identification and analysis of the diseases are important. The proper classification with least data in deep learning is the most challenging task. In addition, it is tough to label the data manually depending upon the selection criterion. Transfer learning algorithm helps in resolving this kind of problem by means of learning the previous task and then applying capabilities and knowledge to the new task. This work presents the convolution neural network-based model to predict and analysis the potato plant disease using plant village datasets with deep learning algorithms. Transfer learning with feature extraction model is employed to detect the potato plant disease. The results show that improved performance with an accuracy of 98.16%, precision of 98.18%, the recall value of 98.17% and the F1 score value of 98.169 %.


2021 ◽  
Author(s):  
◽  
Syahaneim Marzukhi

<p>This thesis introduces a Three-Cornered Coevolution System that is capable of addressing classification tasks through coevolution (coadaptive evolution) where three different agents (i.e. a generation agent and two classification agents) learn and adapt to the changes of the problems without human involvement. In existing pattern classification systems, humans usually play a major role in creating and controlling the problem domain. In particular, humans set up and tune the problem’s difficulty. A motivation of the work for this thesis is to design and develop an automatic pattern generation and classification system that can generate various sets of exemplars to be learned from and perform the classification tasks autonomously. The system should be able to automatically adjust the problem’s difficulty based on the learners’ ability to learn (e.g. determining features in the problem that affect the learners’ performance in order to generate various problems for classification at different levels of difficulty). Further, the system should be capable of addressing the classification tasks through coevolution (coadaptive evolution), where the participating agents learn and adapt to the changes of the problems without human participation. Ultimately, Learning Classifier System (LCS) is chosen to be implemented in the participating agents. LCS has several potential characteristics, such as interpretability, generalisation capability and variations in representation, that are suitable for the system. The work can be broken down into three main phases. Phase 1 is to develop an automated evolvable problem generator to autonomously generate various problems for classification, Phase 2 is to develop the Two-Cornered Coevolution System for classification, and Phase 3 is to develop the Three-Cornered Coevolution System for classification. Phase 1 is necessary in order to create a set of problem domains for classification (i.e. image-based data or artificial data) that can be generated automatically, where the difficulty levels of the problem can be adjusted and tuned. Phase 2 is needed to investigate the generation agent’s ability to autonomously tune and adjust the problem’s difficulty based on the classification agent’s performance. Phase 2 is a standard coevolution system, where two different agents evolve to adapt to the changes of the problem. The classification agent evolves to learn various classification problems, while the generation agent evolves to tune and adjust the problem’s difficulty based on the learner’s ability to learn. Phase 3 is the final research goal. This phase develops a new coevolution system where three different agents evolve to adapt to the changes of the problem. Both of the classification agents evolve to learn various classification problems, while the generation agent evolves to tune and adjust the problem’s difficulty based on the classification agents’ ability to learn. The classification agents use different styles of learning techniques (i.e. supervised or reinforcement learning techniques) to learn the problems. Based on the classification agents’ ability (i.e. the difference in performance between the classification agents) the generation agent adjusts and creates various problems for classification at different levels of difficulty (i.e. various ‘hard’ problems). The Three-Cornered Coevolution System offers a great potential for autonomous learning and provides useful insight into coevolution learning over the standard studies of pattern recognition. The system is capable of autonomously generating various problems, learning and providing insight into each learning system’s ability by determining the problem domains where they perform relatively well. This is in contrast to humans having to determine the problem domains.</p>


Author(s):  
Vani Rajasekar ◽  
K Venu ◽  
Soumya Ranjan Jena ◽  
R. Janani Varthini ◽  
S. Ishwarya

Agriculture is a vital part of every country’s economy, and India is regarded an agro-based nation. One of the main purposes of agriculture is to yield healthy crops without any disease. Cotton is a significant crop in India in relation to income. India is the world’s largest producer of cotton. Cotton crops are affected when leaves fall off early or become afflicted with diseases. Farmers and planting experts, on the other hand, have faced numerous concerns and ongoing agricultural obstacles for millennia, including much cotton disease. Because severe cotton disease can result in no grain harvest, a rapid, efficient, less expensive and reliable approach for detecting cotton illnesses is widely wanted in the agricultural information area. Deep learning method is used to solve the issue because it will perform exceptionally well in image processing and classification problems. The network was built using a combination of the benefits of both the ResNet pre-trained on ImageNet and the Xception component, and this technique outperforms other state-of-the-art techniques. Every convolution layer with in dense block is tiny, so each convolution kernel is still in charge of learning the tiniest details. The deep convolution neural networks for the detection of plant leaf diseases contemplate utilising a pre-trained model acquired from usual enormous datasets, and then applying it to a specific task educated with their own data. The experimental results show that for ResNet-50, a training accuracy of 0.95 and validation accuracy of 0.98 is obtained whereas training loss of 0.33 and validation loss of 0.5.


Plant diseases have been a major crisis that is disturbing the food production. So there is a need to provide proper procedures for plant disease detection at its growing age and also during harvesting stage. Timely disease detection can help the user to respond instantly and sketch for some defensive actions. This detection can be carried out without human intervention by using plant leaf images. Deep learning is progressively best for image detection and classification. In this effort, a deep learning based GoogleNet architecture is used for plant diseases detection. The model is trained using public database of 54,306 images of 14 crop varieties and their respective diseases. It achieves 97.82% accuracy for 14 crop types making it capable of further deployment in a crop detection and protection application.


Author(s):  
Priyanka Sahu ◽  
Anuradha Chug ◽  
Amit Prakash Singh ◽  
Dinesh Singh ◽  
Ravinder Pal Singh

Deep learning (DL) has rapidly become an essential tool for image classification tasks. This technique is now being deployed to the tasks of classifying and detecting plant diseases. The encouraging results achieved with this methodology hide many problems that are rarely addressed in related experiments. This study examines the main factors influencing the efficiency of deep neural networks for plant disease detection. The challenges discussed in the study are based on the literature as well as experiments conducted using an image database, which contains approximately 1,296 leaf images of the beans crop. A pre-trained convolutional neural network, EfficientNet B0, is used for training and testing purposes. This study gives and emphasizes on factors and challenges that may potentially affect the use of DL techniques to detect and classify plant diseases. Some solutions are also suggested that may overcome these problems.


Sign in / Sign up

Export Citation Format

Share Document