scholarly journals Limited Phenotypic Variation in Vulnerability to Cavitation and Stomatal Sensitivity to Vapor Pressure Deficit among Clones of Aristotelia chilensis from Different Climatic Origins

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1777
Author(s):  
Marco A. Yáñez ◽  
Javier I. Urzua ◽  
Sergio E. Espinoza ◽  
Victor L. Peña

Aristotelia chilensis (Molina) Stuntz is a promising species in the food industry as it provides ‘super fruits’ with remarkable antioxidant activity. However, under the predicted climate change scenario, the ongoing domestication of the species must consider selecting the most productive genotypes and be based on traits conferring drought tolerance. We assessed the vulnerability to cavitation and stomatal sensitivity to vapor pressure deficit (VPD) in A. chilensis clones originated from provenances with contrasting climates. A nursery experiment was carried out for one growing season on 2-year-old potted plants. Measurements of stomatal conductance (gs) responses to VPD were taken in spring, summer, and autumn, whereas vulnerability to cavitation was evaluated at the end of spring. Overall, the vulnerability to cavitation of the species was moderate (mean P50 of −2.2 MPa). Parameters of the vulnerability curves (Kmax, P50, P88, and S50) showed no differences among clones or when northern and southern clones were compared. Moreover, there were no differences in stomatal sensitivity to VPD at the provenance or the clonal level. However, compared with other studies, the stomatal sensitivity was considered moderately low, especially in the range of 1 to 3 kPa of VPD. The comparable performance of genotypes from contrasting provenance origins suggests low genetic variation for these traits. Further research must consider testing on diverse environmental conditions to assess the phenotypic plasticity of these types of traits.

2017 ◽  
Vol 206 ◽  
pp. 128-137 ◽  
Author(s):  
Viviana Medina ◽  
Jorge C. Berny-Mier y Teran ◽  
Paul Gepts ◽  
Matthew E. Gilbert

1984 ◽  
Vol 14 (6) ◽  
pp. 905-908 ◽  
Author(s):  
J. D. Marshall ◽  
R. H. Waring

Increasing stomatal closure was exhibited by two conifer and six broadleaf species as vapor pressure deficit increased. Conifers were more sensitive to high vapor pressure deficit than were the broadleaved species. One shrub, snowbrush (Ceanothusvelutinus Dougl. ex Hook.), exhibited no stomatal closure as vapor pressure deficit increased. These traits, when interpreted in terms of known soil moisture depletion patterns, help explain why broadleaved species initially colonize disturbed areas in western Oregon, but are later replaced by long-lived conifers.


2000 ◽  
pp. 26-31
Author(s):  
E. I. Parfenova ◽  
N. M. Chebakova

Global climate warming is expected to be a new factor influencing vegetation redistribution and productivity in the XXI century. In this paper possible vegetation change in Mountain Altai under global warming is evaluated. The attention is focused on forest vegetation being one of the most important natural resources for the regional economy. A bioclimatic model of correlation between vegetation and climate is used to predict vegetation change (Parfenova, Tchebakova 1998). In the model, a vegetation class — an altitudinal vegetation belt (mountain tundra, dark- coniferous subalpine open woodland, light-coniferous subgolets open woodland, dark-coniferous mountain taiga, light-coniferous mountain taiga, chern taiga, subtaiga and forest-steppe, mountain steppe) is predicted from a combination of July Temperature (JT) and Complex Moisture Index (CMI). Borders between vegetation classes are determined by certain values of these two climatic indices. Some bioclimatic regularities of vegetation distribution in Mountain Altai have been found: 1. Tundra is separated from taiga by the JT value of 8.5°C; 2. Dark- coniferous taiga is separated from light-coniferous taiga by the CMI value of 2.25; 3. Mountain steppe is separated from the forests by the CMI value of 4.0. 4. Within both dark-coniferous and light-coniferous taiga, vegetation classes are separated by the temperature factor. For the spatially model of vegetation distribution in Mountain Altai within the window 84 E — 90 E and 48 N — 52 N, the DEM (Digital Elevation Model) was used with a pixel of 1 km resolution. In a GIS Package IDRISI for Windows 2.0, climatic layers were developed based on DEM and multiple regressions relating climatic indices to physiography (elevation and latitude). Coupling the map of climatic indices with the authors' bioclimatic model resulted into a vegetation map for the region of interest. Visual comparison of the modelled vegetation map with the observed geobotanical map (Kuminova, 1960; Ogureeva, 1980) showed a good similarity between them. The new climatic indices map was developed under the climate change scenario with summer temperature increase 2°C and annual precipitation increase 20% (Menzhulin, 1998). For most mountains under such climate change scenario vegetation belts would rise 300—400 m on average. Under current climate, the dark-coniferous and light-coniferous mountain taiga forests dominate throughout Mountain Altai. The chern forests are the most productive and floristically rich and are also widely distributed. Under climate warming, light-coniferous mountain taiga may be expected to transform into subtaiga and forest-steppe and dark-coniferous taiga may be expected to transform partly into chern taiga. Other consequences of warming may happen such as the increase of forest productivity within the territories with sufficient rainfall and the increase of forest fire occurrence over territories with insufficient rainfall.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 501c-501
Author(s):  
Andrés A. Estrada-Luna ◽  
Jonathan N. Egilla ◽  
Fred T. Davies

The effect of mycorrhizal fungi on gas exchange of micropropagated guava plantlets (Psidium guajava L.) during acclimatization and plant establishment was determined. Guava plantlets (Psidium guajava L. cv. `Media China') were asexually propagated through tissue culture and acclimatized in a glasshouse for eighteen weeks. Half of the plantlets were inoculated with ZAC-19, which is a mixed isolate containing Glomus etunicatum and an unknown Glomus spp. Plantlets were fertilized with modified Long Ashton nutrient solution containing 11 (g P/ml. Gas exchange measurements included photosynthetic rate (A), stomatal conductance (gs), internal CO2 concentration (Ci), transpiration rate (E), water use efficiency (WUE), and vapor pressure deficit (VPD). Measurements were taken at 2, 4, 8 and 18 weeks after inoculation using a LI-6200 portable photosynthesis system (LI-COR Inc. Lincoln, Neb., USA). Two weeks after inoculation, noninoculated plantlets had greater A compared to mycorrhizal plantlets. However, 4 and 8 weeks after inoculation, mycorrhizal plantlets had greater A, gs, Ci and WUE. At the end of the experiment gas exchange was comparable between noninoculated and mycorrhizal plantlets.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 385
Author(s):  
Beatrice Nöldeke ◽  
Etti Winter ◽  
Yves Laumonier ◽  
Trifosa Simamora

In recent years, agroforestry has gained increasing attention as an option to simultaneously alleviate poverty, provide ecological benefits, and mitigate climate change. The present study simulates small-scale farmers’ agroforestry adoption decisions to investigate the consequences for livelihoods and the environment over time. To explore the interdependencies between agroforestry adoption, livelihoods, and the environment, an agent-based model adjusted to a case study area in rural Indonesia was implemented. Thereby, the model compares different scenarios, including a climate change scenario. The agroforestry system under investigation consists of an illipe (Shorea stenoptera) rubber (Hevea brasiliensis) mix, which are both locally valued tree species. The simulations reveal that farmers who adopt agroforestry diversify their livelihood portfolio while increasing income. Additionally, the model predicts environmental benefits: enhanced biodiversity and higher carbon sequestration in the landscape. The benefits of agroforestry for livelihoods and nature gain particular importance in the climate change scenario. The results therefore provide policy-makers and practitioners with insights into the dynamic economic and environmental advantages of promoting agroforestry.


Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 131
Author(s):  
Matteo Zucchini ◽  
Arash Khosravi ◽  
Veronica Giorgi ◽  
Adriano Mancini ◽  
Davide Neri

The growth of cherry fruit is generally described using a double sigmoid model, divided into four growth stages. Abiotic factors are considered to be significant components in modifying fruit growth, and among these, the vapor pressure deficit (VPD) is deemed the most effective. In this study, we investigated sweet cherry fruit growth through the continuous, hourly monitoring of fruit transversal diameter over two consecutive years (2019 and 2020), from the beginning of the third stage to maturation (forth stage). Extensometers were used in the field and VPD was calculated from weather data. The fruit growth pattern up to the end of the third stage demonstrated three critical steps during non-rainy days: shrinkage, stabilization and expansion. In the third stage of fruit growth, a partial clockwise hysteresis curve of circadian growth, as a response to VPD, appeared on random days. The pattern of fruit growth during rainy days was not distinctive, but the amount and duration of rain caused a consequent decrease in the VPD and indirectly boosted fruit growth. At the beginning of the fourth stage, the circadian growth changed and the daily transversal diameter vs VPD formed fully clockwise hysteresis curves for most of this stage. Our findings indicate that hysteresis can be employed to evaluate the initial phenological phase of fruit maturation, as a fully clockwise hysteresis curve was observable only in the fourth stage of fruit growth. There are additional opportunities for its use in the management of fruit production, such as in precision fruit farming.


Sign in / Sign up

Export Citation Format

Share Document