scholarly journals Detection and Verification of QTL for Salinity Tolerance at Germination and Seedling Stages Using Wild Barley Introgression Lines

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2246
Author(s):  
Mohammed Abdelaziz Sayed ◽  
Rasha Tarawneh ◽  
Helmy Mohamed Youssef ◽  
Klaus Pillen ◽  
Andreas Börner

Salinity is one of the major environmental factors that negatively affect crop development, particularly at the early growth stage of a plant and consequently the final yield. Therefore, a set of 50 wild barley (Hordeum vulgare ssp. spontaneum, Hsp) introgression lines (ILs) was used to detect QTL alleles improving germination and seedling growth under control, 75 mM, and 150 mM NaCl conditions. Large variation was observed for germination and seedling growth related traits that were highly heritable under salinity stress. In addition, highly significant differences were obtained for five salinity tolerance indices and between treatments as well. A total of 90 and 35 significant QTL were identified for ten investigated traits and for tolerance indices, respectively. The Hsp introgression alleles are involved in improving salinity tolerance at forty (43.9%) out of 90 QTL including introgression lines S42IL-109 (2H), S42IL-116 (4H), S42IL-132 (6H), S42IL-133 (7H), S42IL-148 (6H), and S42IL-176 (5H). Interestingly, seven exotic QTL alleles were successfully validated in the wild barley ILs including S42IL-127 (5H), 139 (7H), 125 (5H), 117 (4H), 118 (4H), 121 (4H), and 137 (7H). We conclude that the barley introgression lines contain numerous germination and seedling growth-improving novel QTL alleles, which are effective under salinity conditions.

2019 ◽  
Vol 139 (2) ◽  
pp. 304-316 ◽  
Author(s):  
Fatemeh Ebrahim ◽  
Ahmad Arzani ◽  
Mehdi Rahimmalek ◽  
Dongfa Sun ◽  
Junhua Peng

age ◽  
2021 ◽  
Vol 4 (3) ◽  
Author(s):  
Abdullah H. Mohammed ◽  
Jesse I. Morrison ◽  
Brian S. Baldwin

2018 ◽  
Vol 51 (3) ◽  
pp. 51-68 ◽  
Author(s):  
M.K. Hasan ◽  
M.S. Islam ◽  
M.R. Islam ◽  
H.N. Ismaan ◽  
A. El Sabagh

Abstract A laboratory experiment regarding germination and seedling growth test was conducted with three black gram genotypes tested under three salinity levels (0, 75 and 150 mM), for 10 days, in sand culture within small plastic pot, to investigate the germination and seedling growth characteristics. Different germination traits of all black gram genotypes, like germination percentage (GP), germination rate (GR), coefficient of velocity of germination (CVG) greatly reduced, as well as mean germination time (MGT) increased with increasing salt stress. At high salt stress, BARI Mash-3 provided the highest GP reduction (28.58%), while the lowest was recorded (15.79% to control) in BARI Mash-1. Salinity have the negative impact on shoot and root lengths, fresh and dry weights. The highest (50.32% to control) and lowest reduction (36.39%) of shoot length were recorded in BARI Mash-2 and BARI Mash-1, respectively, under 150 mM NaCl saline conditions. There were significant reduction of root lengths, root fresh and dry weight, shoot length, shoot fresh and dry weight in all genotypes under saline condition. The genotypes were arranged as BARI Mash-1 > BARI Mash-3 > BARI Mash-2, with respect to salinity tolerance.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 712
Author(s):  
Md Sarowar Alam ◽  
Mark Tester ◽  
Gabriele Fiene ◽  
Magdi Ali Ahmed Mousa

Salinity is one of the most significant environmental stresses for sustainable crop production in major arable lands of the globe. Thus, we conducted experiments with 27 tomato genotypes to screen for salinity tolerance at seedling stage, which were treated with non-salinized (S1) control (18.2 mM NaCl) and salinized (S2) (200 mM NaCl) irrigation water. In all genotypes, the elevated salinity treatment contributed to a major depression in morphological and physiological characteristics; however, a smaller decrease was found in certain tolerant genotypes. Principal component analyses (PCA) and clustering with percentage reduction in growth parameters and different salt tolerance indices classified the tomato accessions into five key clusters. In particular, the tolerant genotypes were assembled into one cluster. The growth and tolerance indices PCA also showed the order of salt-tolerance of the studied genotypes, where Saniora was the most tolerant genotype and P.Guyu was the most susceptible genotype. To investigate the possible biochemical basis for salt stress tolerance, we further characterized six tomato genotypes with varying levels of salinity tolerance. A higher increase in proline content, and antioxidants activities were observed for the salt-tolerant genotypes in comparison to the susceptible genotypes. Salt-tolerant genotypes identified in this work herald a promising source in the tomato improvement program or for grafting as scions with improved salinity tolerance in tomato.


Author(s):  
Gamze Kaya

The study aimed to evaluate the use of germination indices as a screening tool for salinity tolerance during germination and early seedling growth of pepper cultivars, and to distinguish the potential for genetic responses to salt tolerance. In the study, the seeds of seven pepper cultivars were germinated at increasing NaCl levels of 5, 10, 15 and 20 dS/m and distilled water as the control treatment for 14 days. Germination percentage (GP), mean germination time (MGT), germination index (GI), germination stress tolerance index (GSTI), seedling length (SL), seedling fresh weight (SFW) and vigor index (VI) were investigated. Results showed that germination percentage decreased with increasing NaCl levels while the highest germination percentage at 20 dS/m was 92% in BT Burdem with no significant reduction. Seedling growth of pepper cultivars was severely inhibited by increasing salinity stress. SFW was depressed depending on reduction in SL due to increasing NaCl. BT-Burli and BT İnce Sivri were the most tolerant cultivars to NaCl and they were used for genetic resources towards salinity. Seedling growth was much more sensitive to salinity than germination because of the highest percent reduction in seedling growth parameters. Among the parameters, GSTI gave the highest significant correlation coefficient with SL and SFW; indicating that it would be useful for estimating seedling growth. It was concluded that genotypic variation was observed among pepper cultivars for salinity tolerance and GSTI could be used for a predictor for salinity tolerance.


Sign in / Sign up

Export Citation Format

Share Document