Salinity Tolerance of Black Gram Cultivars During Germination and Early Seedling Growth

2018 ◽  
Vol 51 (3) ◽  
pp. 51-68 ◽  
Author(s):  
M.K. Hasan ◽  
M.S. Islam ◽  
M.R. Islam ◽  
H.N. Ismaan ◽  
A. El Sabagh

Abstract A laboratory experiment regarding germination and seedling growth test was conducted with three black gram genotypes tested under three salinity levels (0, 75 and 150 mM), for 10 days, in sand culture within small plastic pot, to investigate the germination and seedling growth characteristics. Different germination traits of all black gram genotypes, like germination percentage (GP), germination rate (GR), coefficient of velocity of germination (CVG) greatly reduced, as well as mean germination time (MGT) increased with increasing salt stress. At high salt stress, BARI Mash-3 provided the highest GP reduction (28.58%), while the lowest was recorded (15.79% to control) in BARI Mash-1. Salinity have the negative impact on shoot and root lengths, fresh and dry weights. The highest (50.32% to control) and lowest reduction (36.39%) of shoot length were recorded in BARI Mash-2 and BARI Mash-1, respectively, under 150 mM NaCl saline conditions. There were significant reduction of root lengths, root fresh and dry weight, shoot length, shoot fresh and dry weight in all genotypes under saline condition. The genotypes were arranged as BARI Mash-1 > BARI Mash-3 > BARI Mash-2, with respect to salinity tolerance.

2010 ◽  
Vol 2 (3) ◽  
pp. 91-95 ◽  
Author(s):  
Alireza PIRZAD ◽  
Vahid GHASEMIAN ◽  
Reza DARVISHZADEH ◽  
Mohammad SEDGHI ◽  
Abbas HASSANI ◽  
...  

A bioassay run was carried out in the incubator to evaluate possible allelopathic effects of water extracts of sage and white wormwood on germination and seedling growth of purslane. Results showed that the type of extract and its concentration (0, 5, 10, 15 and 20%) significantly influenced final germination percentage, germination rate and index, root and shoot length, root/shoot ratio, fresh and dry weight of seedling of purslane. The interaction between these two experimental factors was always significant, producing different results according to the different combination levels. The statistical comparison of means indicated that the maximum germination percentage and germination rate (respectively 68% and 11.4% d-1) were obtained from the untreated control (0% extract), while the lowest values for the same two characters occurred with 15% of sage (respectively 45% and 6.4% d-1) and 20% of white wormwood (38% and 7.5% d-1). Concerning germination indexes, the highest (55) and the lowest (32) values were observed respectively on the control and with 15% of sage extract or 20% of white wormwood extract. The longest (4.5 cm) and the shortest (1.3 cm) root of purslane were obtained with 5% of white wormwood and 20% of sage extracts, respectively. Changes in shoot length with sage and white wormwood extracts were similar to those in root length, even though shoot length was less affected by the concentration of extracts. Root and shoot length changes brought to maximum (22.0) and minimum (8.9) values for the root/shoot length ratio, respectively with 5% of white wormwood and 20% of sage extracts. The maximum fresh (2.111 g) and dry (0.338 g) seedling weight of purslane were obtained from untreated control, producing the same seedling weight with 5% of sage, 5 and 10% of white wormwood extract. While the minimum fresh (0.692 g) and dry (0.111 g) seedling weight were obtained from 15% of white wormwood extract, so that there is no significant differences between this value and the seedling weight produced under 10, 15 and 20% of sage and 20% of white wormwood extract.


2016 ◽  
Vol 4 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Pankaj Awasthi ◽  
Himani Karki ◽  
Vibhuti Vibhuti ◽  
Kiran Bargali ◽  
S. S Bargali

Vigna is a genus of flowering plants in the legume family, Fabaceae with worldwide distribution. In the present study, effect of salt stress was investigated in four species of Vigna viz. V. mungo (urd), V. angularis (rais), V. radiata (moong) and V. aconitifolia (moth) at germination and seedling growth stages in a glasshouse experiment. Seeds of selected crops were surface sterilized and placed under three salt stress levels of 0 (control), 50mM and 100mM using NaCl solutions. Three replicates for each treatment was used for this experiment. The results indicated that increase in salt stress levels caused a reduction in germination percentage, germination rate, shoot length, root length and seedling dry weight of each Vigna species. The overall results indicated that among the four species, V. aconitifolia was the most sensitive, whereas V. mungo was the least sensitive species to the salinity in almost every aspect of growth.


Author(s):  
Anita Mann ◽  
Gurpreet Kaur ◽  
Ashwani Kumar ◽  
Satish Kumar Sanwal ◽  
Jogendra Singh ◽  
...  

Screening of chickpea lines for salt tolerance through seed germination and early seedling growth is crucial for their evaluation. Seeds of 30 chickpea genotypes were germinated on a sand bed irrigated with saline (3, 6, 9, 12 dS/m) and control solutions upto 30 days. At the early seedling stage (25-30 days), germination percentage, chlorophyll content, proline, root length, shoot length and seedling dry weight were found to be affected due to salinity. Salt tolerance index (STI) for plant biomass maintained a significant correlation with chlorophyll, proline, shoot length, and root length, which indicated that these parameters could be used as selection criteria for screening chickpea genotypes against salt stress. Significant differences in shoot length, root length, and seedling dry weight in 30-day-old seedlings were observed among selected chickpea genotypes as well. From the overall observation of germination characterstics and early seedling growth, it is concluded that the chickpea genotypes, HC-1, HC-5, ICC 867, ICC 5003, H-10-41 showed better salt tolerance as compared to the available salt tolerant check variety.


2018 ◽  
Vol 69 ◽  
pp. 1-11 ◽  
Author(s):  
Nuurismaan Hassan ◽  
Md. Kamrul Hasan ◽  
Md. Obaidullah Shaddam ◽  
Mohammad Sohidul Islam ◽  
Celaleddin Barutçular ◽  
...  

A pot experiment was carried out at the Laboratory of Department of Agronomy, Hajee Mohamad Danesh Science and Technology University (HSTU), Bangladesh during 2016 to evaluate the response of maize varieties at germination and seedling growth stages under salt stress. The seeds of the BARI (Bangladesh Agricultural Research Institute) developed four maize varietiesviz.Barnali, Khoi Vutta, Mohor and BARI Maize 5 were placed in plastic pots (each of 25 cm length and 12 cm width) on sand bed irrigated with tap water (control), 100 and 200 mM NaCl salt solutions. It was replicated in thrice with completely randomized design (CRD). Salinity stress significantly affected the germination characters and seedling growth parameters of maize varieties. The germination percentages (GP) and germination rate (GR) reduced significantly with increasing salinity, and the variety Khoi Vutta showed the highest GP and GR followed by Barnali and Mohor showed the lowest GP and GR followed by BARI maize 5. Under high salinity level, seedling growths characteristics like shoot and root lengths, fresh and dry weight of shoot and roots reduced remarkably in the variety Mohor indicating salt susceptible while the minimum reduction of the aforementioned traits was observed in the variety Khoi Vutta demonstrating high salt tolerant variety. The studied varieties can be ranked on the basis of salt tolerance as Khoi Vutta > Barnali > BARI Maize 5 > Mohor from the experiment.


2020 ◽  
Vol 27 (2) ◽  
pp. 433-446
Author(s):  
Bilal Ahmad Khan ◽  
Muhammad Ather Nadeem ◽  
Saima Anwar ◽  
Rizwan Maqbool ◽  
Muhammad Yasin ◽  
...  

The study was aimed to explore the phytotoxic potential of Sonchus oleraceus L. on the emergence and seedling growth of Echinocloa cruss-galli L. and quantification of allelochemicals present in leaves, stem and fruit of S. oleraceus weed. The experiment comprised of aqueous extracts of leaf, roots and fruits applied at 0.25, 0.5, 1, 2, 4 and 8% (w/v) along with a control (0%). Data regarding seed emergence, emergence index, emergence percentage, root length, shoot length and seedling dry weight was recorded. All the tested concentrations of all parts of S. oleraceus significantly inhibited the seed emergence, emergence index, emergence percentage (%) and growth and delayed mean emergence time and time taken to 50% emergence of E. cruss-galli weed. However, maximum mean emergence time (5.20 days) and time taken to 50% emergence (3.49 days), were noted at 8% concentration of fruit and leaf aqueous extract, respectively. Fruit aqueous extract at 8% concentration caused the lowest germination index (1.70), germination percentage (40%), root length (0.09 cm), shoot length (0.45 cm) and dry weight (0.16 g) of E. cruss-galli. Results suggested that the extract of S. oleraceus weed at concentration (8%) can be used as potential bio-herbicide for the control of E. cruss-galli weed.


Author(s):  
Shaila Shermin Tania ◽  
Md. Moklasur Rahaman ◽  
Farjana Rauf ◽  
Mehera Afroj Suborna ◽  
Muhammad Humayun Kabir ◽  
...  

Aim: Salinity is a major barrier to successful crop production. Seed priming and exogenous application of different signaling molecules can efficiently confer salinity tolerance. Wheat is a major cereal crop in the world and salinity drastically reduces the wheat seedling growth and yield. Therefore, the present study was conducted to explore the potentiality of different signaling molecules such as salicylic acid (SA) and H2O2 to alleviate the salinity-induced growth inhibition of wheat. Place and Duration of the Study: The study was conducted in the Department of Seed Science and Technology, Bangladesh Agricultural University, from September-October, 2021. Methodology: The wheat (cv. BARI-Gom 24) seeds were soaked in normal tap water (hydro-priming), 1 mM SA, 2 mM SA, 0.1 mM H2O2, and 0.15 mM H2O2 solutions for 30 minutes. The untreated seeds were used as control. Eventually, primed seeds were exposed to 150 mM NaCl in Petri dishes during germination. Primed and non-primed seedlings were grown for 15 days under 150 mM NaCl stress condition. Results: The result revealed that salt stress significantly reduced germination percentage (GP), germination index (GI), seed vigor index (SVI), shoot and root length. The results also exhibited that photosynthetic pigments, total chlorophyll, carotenoids, lycopene, and beta-carotene contents were significantly reduced by salt stress. Seed priming with SA and H2O2 and hydro-priming promoted the germination percentage, seedling growth (including shoot and root length), SVI, and photosynthetic pigments. Conclusion: Pretreatment with 1 mM SA and 0.1 mM H2O2 was observed to be relatively more efficient in conferring salinity tolerance of wheat compared with other treating conditions. Overall, this study suggests that wheat seed priming with SA and H2O2 and hydro-priming can improve salinity tolerance. Aim: Salinity is a major barrier to successful crop production. Seed priming and exogenous application of different signaling molecules can efficiently confer salinity tolerance. Wheat is a major cereal crop in the world and salinity drastically reduces the wheat seedling growth and yield. Therefore, the present study was conducted to explore the potentiality of different signaling molecules such as salicylic acid (SA) and H2O2 to alleviate the salinity-induced growth inhibition of wheat. Place and Duration of the Study: The study was conducted in the Department of Seed Science and Technology, Bangladesh Agricultural University, from September-October, 2021. Methodology: The wheat (cv. BARI-Gom 24) seeds were soaked in normal tap water (hydro-priming), 1 mM SA, 2 mM SA, 0.1 mM H2O2, and 0.15 mM H2O2 solutions for 30 minutes. The untreated seeds were used as control. Eventually, primed seeds were exposed to 150 mM NaCl in Petri dishes during germination. Primed and non-primed seedlings were grown for 15 days under 150 mM NaCl stress condition. Results: The result revealed that salt stress significantly reduced germination percentage (GP), germination index (GI), seed vigor index (SVI), shoot and root length. The results also exhibited that photosynthetic pigments, total chlorophyll, carotenoids, lycopene, and beta-carotene contents were significantly reduced by salt stress. Seed priming with SA and H2O2 and hydro-priming promoted the germination percentage, seedling growth (including shoot and root length), SVI, and photosynthetic pigments. Conclusion: Pretreatment with 1 mM SA and 0.1 mM H2O2 was observed to be relatively more efficient in conferring salinity tolerance of wheat compared with other treating conditions. Overall, this study suggests that wheat seed priming with SA and H2O2 and hydro-priming can improve salinity tolerance.


2016 ◽  
Vol 73 (1) ◽  
pp. 79-86
Author(s):  
Batool Mahdavi

Abstract In this study, the effect of different alkaline concentrations (0, 10, 20, 30, 40, 50, 60 mM) on germination and biochemical characteristics of the two sesame (Sesamum indicum L.) cultivares (Dashtestan and GL-13) which are registered cultivars of Iran were investigated. The experiment was carried out in a completely randomized design with three replications. Results showed that, germination percentage, germination rate, shoot length and dry weight, root length and dry weight and K+ content decreased, whereas, malondialdehyde (MDA), proline, total soluble sugars and Na+ contents increased with increasing alkalinity stress. GL-13 cultivar had the least root and shoot length, proline and K+ content than Dashtestan.


2014 ◽  
Vol 12 ◽  
pp. 5-15 ◽  
Author(s):  
R. Sozharajan ◽  
S. Natarajan

Salt stress is one of the most severe environmental factors that reduces and limits growth and development of plants. Abiotic stresses such as heavy metals, salinity, drought, temperature, UV-radiation, ozone causes drastic yield reduction in most of the crops. Especially salt stress affects around 20 of NaCl on germination and seedling growth of Zea mays L. Seeds of Zea mays were germinated in glass Petri- 100 × 15 mm diameter lined with blotting paper. Ten seeds were placed in each petri-dish. Petridishes were irrigated with 25, 50, 75, 100, 125, 150, 175 and 200 mM concentrations of NaCl. A control was moistened with ten milliliters of distilled water. The germination percentage, water absorption of the seeds, water uptake percentage and the growth parameters were observed. The results obtained showed that the inhibition of the germination percentage, germination rate, water uptake, growth and biomass accumulation of the seedlings were observed to decrease with increasing NaCl concentrations. At the highest level of stress both plumule and radical decreased significantly. The salt stress decreased seed germination, biomass and growth of maize seedlings due to ion toxicity, decrease osmotic potential and oxidative stress


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2264
Author(s):  
Rim Ben Youssef ◽  
Nahida Jelali ◽  
Nadia Boukari ◽  
Alfonso Albacete ◽  
Cristina Martinez ◽  
...  

The current work aimed to investigate the effect of seed priming with different agents (CaCl2, KCl, and KNO3) on germination and seedling establishment in seeds of the barley species of both Hordeum vulgare (L. Manel) and Hordeum maritimum germinated with three salt concentrations (0, 100, and 200 mM NaCl). The results showed that under unprimed conditions, salt stress significantly reduced the final germination rate, the mean daily germination, and the seedling length and dry weight. It led to a decrease in the essential nutrient content (iron, calcium, magnesium, and potassium) against an increase in sodium level in both of the barley species. Moreover, this environmental constraint provoked a membrane injury caused by a considerable increase in electrolyte leakage and the malondialdehyde content (MDA). Data analysis proved that seed priming with CaCl2, KCl, and KNO3 was an effective method for alleviating barley seed germination caused by salt stress to varying degrees. Different priming treatments clearly stimulated germination parameters and the essential nutrient concentration, in addition to increasing the seedling growth rate. The application of seed priming reduced the accumulation of sodium ions and mitigated the oxidative stress of seeds caused by salt. This mitigation was traduced by the maintenance of low levels of MDA and electrolyte leakage. We conclude that the priming agents can be classed into three ranges based on their efficacy on the different parameters analyzed; CaCl2 was placed in the first range, followed closely by KNO3, while the least effective was KCl, which placed in the third range.


2016 ◽  
Vol 39 (4) ◽  
Author(s):  
Ali Sepehri ◽  
Maryam Saman ◽  
Somayeh Bayat

Alkalinity is one of the main limiting factors of seed germination in alkaline soils. The aim of this study was to evaluate the effects of Na2CO3 levels (0, 5, 10, 15, 20 and 25 mM) on seed germination, seed reserve utilization and seedling vigour of three local bitter vetch cultivars (Buinzahra, Shahreza and Tarom). The results indicated that increasing Na2CO3 concentrations caused a decrease in germination percentage (GP), germination rate (GR), seedling length, seedling dry weight (SLDW) and seed reserve utilization efficiency (SRUE). The rate of reduction in shoot length in comparison with the control in different concentrations of Na2CO3 was detected from Buinzahra as 30-92%, Shahreza 39-97% and Tarom 13-83%. Decrease in root length was more than shoot length in all the cultivars at each Na2CO3 level, as compared to the control. The weight of mobilized seed reserve (WMSR) and seed reserve depletion percentage (SRDP) decreased with increasing Na2CO3 levels up to 10 mM in Buinzahra and Tarom cultivars and up to 15 mM in Shahreza. WMSR and SRDP then rapidly raised with higher alkalinity levels. These results suggest that reduction of seed germination and decline in seedling dry weight in response to alkalinity stress is a consequence of decline in seed reserve utilization efficiency.


Sign in / Sign up

Export Citation Format

Share Document