scholarly journals Complete Mitogenomes of Two Aragoa Species and Phylogeny of Plantagineae (Plantaginaceae, Lamiales) Using Mitochondrial Genes and the Nuclear Ribosomal RNA Repeat

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2673
Author(s):  
Jeffrey P. Mower ◽  
Lilly Hanley ◽  
Kirsten Wolff ◽  
Natalia Pabón-Mora ◽  
Favio González

Aragoa, comprising 19 high-altitude North Andean species, is one of three genera in the Plantagineae (Plantaginaceae, Lamiales), along with Littorella and Plantago. Based primarily on plastid data and nuclear ITS, Aragoa is sister to a clade of Littorella + Plantago, but Plantagineae relationships have yet to be assessed using multigene datasets from the nuclear and mitochondrial genomes. Here, complete mitogenomes were assembled for two species of Aragoa (A. abietina and A. cleefii). The mitogenomes of both species have a typical suite of genes for 34 proteins, 17 tRNAs, and three rRNAs. The A. abietina mitogenome assembled into a simple circular map, with no large repeats capable of producing alternative isoforms. The A. cleefii mitogenomic map was more complex, involving two circular maps bridged by a substoichiometric linear fragment. Phylogenetics of three mitochondrial genes or the nuclear rRNA repeat placed Aragoa as sister to Littorella + Plantago, consistent with previous studies. However, P. nubicola, the sole representative of subg. Bougueria, was nested within subg. Psyllium based on the mitochondrial and nuclear data, conflicting with plastid-based analyses. Phylogenetics of the nuclear rRNA repeat provided better resolution overall, whereas relationships from mitochondrial data were hindered by extensive substitution rate variation among lineages.

2019 ◽  
Vol 129 (2) ◽  
pp. 492-504 ◽  
Author(s):  
Alessandra P Lamarca ◽  
Carlos G Schrago

Abstract Despite ongoing efforts relying on computationally intensive tree-building methods and large datasets, the deeper phylogenetic relationships between living canid genera remain controversial. We demonstrate that this issue arises fundamentally from the uncertainty of root placement as a consequence of the short length of the branch connecting the major canid clades, which probably resulted from a fast radiation during the early diversification of extant Canidae. Using both nuclear and mitochondrial genes, we investigate the position of the canid root and its consistency by using three rooting methods. We find that mitochondrial genomes consistently retrieve a root node separating the tribe Canini from the remaining canids, whereas nuclear data mostly recover a root that places the Urocyon foxes as the sister lineage of living canids. We demonstrate that, to resolve the canid root, the nuclear segments sequenced so far are significantly less informative than mitochondrial genomes. We also propose that short intervals between speciations obscure the place of the true root, because methods are susceptible to stochastic error in the presence of short internal branches near the root.


2019 ◽  
Vol 11 (10) ◽  
pp. 2824-2849 ◽  
Author(s):  
Paweł Mackiewicz ◽  
Adam Dawid Urantówka ◽  
Aleksandra Kroczak ◽  
Dorota Mackiewicz

Abstract Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representatives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of paraphyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. Phylogenetic analyses based on CR sequences subjected to the complex evolution can produce tree topologies inconsistent with real evolutionary relationships between species. Passerines with two CRs showed a higher metabolic rate in relation to their body mass.


Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 347
Author(s):  
Jazmín Terán-Martínez ◽  
Rocío Rodiles-Hernández ◽  
Marco A. A. Garduño-Sánchez ◽  
Claudia Patricia Ornelas-García

The common snook is one of the most abundant and economically important species in the Usumacinta basin in the Gulf of Mexico, which has led to overfishing, threatening their populations. The main goal of the present study was to assess the genetic diversity and structure of the common snook along the Usumacinta River in order to understand the population dynamics and conservation status of the species. We characterized two mitochondrial markers (mtCox1 and mtCytb) and 11 microsatellites in the Usumacinta basin, which was divided into three zones: rainforest, floodplain and river delta. The mitochondrial data showed very low diversity, showing some haplotypic diversity differences between the rainforest and delta zones. In contrast, we consistently recovered two genetic clusters in the Usumacinta River basin with the nuclear data in both the DAPC and STRUCTURE analyses. These results were consistent with the AMOVA analyses, which showed significant differences among the genetic clusters previously recovered by DAPC and STRUCTURE. In terms of diversity distribution, the floodplain zone corresponded to the most diverse zone according to the mitochondrial and nuclear data, suggesting that this is a transition zone in the basin. Our results support the relevance of the molecular characterization and monitoring of the fishery resources at the Usumacinta River to better understand their connectivity, which could help in their conservation and management.


The Auk ◽  
2007 ◽  
Vol 124 (1) ◽  
pp. 71-84 ◽  
Author(s):  
W. Andrew Cox ◽  
Rebecca T. Kimball ◽  
Edward L. Braun

Abstract The evolutionary relationship between the New World quail (Odontophoridae) and other groups of Galliformes has been an area of debate. In particular, the relationship between the New World quail and guineafowl (Numidinae) has been difficult to resolve. We analyzed >8 kb of DNA sequence data from 16 taxa that represent all major lineages of Galliformes to resolve the phylogenetic position of New World quail. A combined data set of eight nuclear loci and three mitochondrial regions analyzed with maximum parsimony, maximum likelihood, and Bayesian methods provide congruent and strong support for New World quail being basal members of a phasianid clade that excludes guineafowl. By contrast, the three mitochondrial regions exhibit modest incongruence with each other. This is reflected in the combined mitochondrial analyses that weakly support the Sibley-Ahlquist topology that placed the New World quail basal in relation to guineafowl and led to the placement of New World quail in its own family, sister to the Phasianidae. However, simulation-based topology tests using the mitochondrial data were unable to reject the topology suggested by our combined (mitochondrial and nuclear) data set. By contrast, similar tests using our most likely topology and our combined nuclear and mitochondrial data allow us to strongly reject the Sibley-Ahlquist topology and a topology based on morphological data that unites Old and New World quail. Posición Filogenética de las Codornices del Nuevo Mundo (Odontophoridae): Ocho Loci Nucleares y Tres Regiones Mitocondriales Contradicen la Morfología y la Filogenia de Sibley y Ahlquist


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9309
Author(s):  
Viktoria Yu Shtratnikova ◽  
Mikhail I. Schelkunov ◽  
Aleksey A. Penin ◽  
Maria D. Logacheva

Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar in these two categories is still open. The plastid genomes of nonphotosynthetic plants are well characterized, and they exhibit similar patterns of reduction in the two groups. In contrast, little is known about the mitochondrial genomes of MHT plants. We report the structure of the mitochondrial genome of Hypopitys monotropa, a MHT member of Ericaceae, and the expression of its genes. In contrast to its highly reduced plastid genome, the mitochondrial genome of H. monotropa is larger than that of its photosynthetic relative Vaccinium macrocarpon, and its complete size is ~810 Kb. We observed an unusually long repeat-rich structure of the genome that suggests the existence of linear fragments. Despite this unique feature, the gene content of the H. monotropa mitogenome is typical of flowering plants. No acceleration of substitution rates is observed in mitochondrial genes, in contrast to previous observations in parasitic non-photosynthetic plants. Transcriptome sequencing revealed the trans-splicing of several genes and RNA editing in 33 of 38 genes. Notably, we did not find any traces of horizontal gene transfer from fungi, in contrast to plant parasites, which extensively integrate genetic material from their hosts.


2019 ◽  
Vol 11 (7) ◽  
pp. 1797-1812 ◽  
Author(s):  
Dong Zhang ◽  
Hong Zou ◽  
Cong-Jie Hua ◽  
Wen-Xiang Li ◽  
Shahid Mahboob ◽  
...  

Abstract The phylogeny of Isopoda, a speciose order of crustaceans, remains unresolved, with different data sets (morphological, nuclear, mitochondrial) often producing starkly incongruent phylogenetic hypotheses. We hypothesized that extreme diversity in their life histories might be causing compositional heterogeneity/heterotachy in their mitochondrial genomes, and compromising the phylogenetic reconstruction. We tested the effects of different data sets (mitochondrial, nuclear, nucleotides, amino acids, concatenated genes, individual genes, gene orders), phylogenetic algorithms (assuming data homogeneity, heterogeneity, and heterotachy), and partitioning; and found that almost all of them produced unique topologies. As we also found that mitogenomes of Asellota and two Cymothoida families (Cymothoidae and Corallanidae) possess inversed base (GC) skew patterns in comparison to other isopods, we concluded that inverted skews cause long-branch attraction phylogenetic artifacts between these taxa. These asymmetrical skews are most likely driven by multiple independent inversions of origin of replication (i.e., nonadaptive mutational pressures). Although the PhyloBayes CAT-GTR algorithm managed to attenuate some of these artifacts (and outperform partitioning), mitochondrial data have limited applicability for reconstructing the phylogeny of Isopoda. Regardless of this, our analyses allowed us to propose solutions to some unresolved phylogenetic debates, and support Asellota are the most likely candidate for the basal isopod branch. As our findings show that architectural rearrangements might produce major compositional biases even on relatively short evolutionary timescales, the implications are that proving the suitability of data via composition skew analyses should be a prerequisite for every study that aims to use mitochondrial data for phylogenetic reconstruction, even among closely related taxa.


2010 ◽  
Vol 277 (1700) ◽  
pp. 3587-3592 ◽  
Author(s):  
Soo Hyung Eo ◽  
J. Andrew DeWoody

Rates of biological diversification should ultimately correspond to rates of genome evolution. Recent studies have compared diversification rates with phylogenetic branch lengths, but incomplete phylogenies hamper such analyses for many taxa. Herein, we use pairwise comparisons of confamilial sauropsid (bird and reptile) mitochondrial DNA (mtDNA) genome sequences to estimate substitution rates. These molecular evolutionary rates are considered in light of the age and species richness of each taxonomic family, using a random-walk speciation–extinction process to estimate rates of diversification. We find the molecular clock ticks at disparate rates in different families and at different genes. For example, evolutionary rates are relatively fast in snakes and lizards, intermediate in crocodilians and slow in turtles and birds. There was also rate variation across genes, where non-synonymous substitution rates were fastest at ATP8 and slowest at CO 3. Family-by-gene interactions were significant, indicating that local clocks vary substantially among sauropsids. Most importantly, we find evidence that mitochondrial genome evolutionary rates are positively correlated with speciation rates and with contemporary species richness. Nuclear sequences are poorly represented among reptiles, but the correlation between rates of molecular evolution and species diversification also extends to 18 avian nuclear genes we tested. Thus, the nuclear data buttress our mtDNA findings.


2005 ◽  
Vol 62 (3) ◽  
pp. 505-517 ◽  
Author(s):  
Melania EA Cristescu ◽  
Paul DN Hebert

A spectacular adaptive radiation of crustaceans has occurred in the Black, Caspian, and Aral seas. This study tests several evolutionary scenarios based on the extent of genetic differentiation and the phylogenetic relationships among endemic mysids and gammarid amphipods from the Black and Caspian seas. Molecular phylogenies for these taxa were based on two mitochondrial genes: cytochrome c oxidase subunit I and the large ribosomal RNA subunit (16S), and one nuclear gene, the large ribosomal RNA subunit (28S). The results support the monophyly of the Ponto–Caspian gammarids (genera Dikerogammarus, Echinogammarus, Obesogammarus, and Pontogammarus), suggesting their origin from one colonization event. By contrast, several colonization events preceded the radiation of the Ponto–Caspian mysids (genera Limnomysis and Paramysis). Levels of intraspecific divergence were variable, with mysids showing either no geographic structure or deep genetic splits reflecting a long history of reproductive isolation between populations in marine settings and those in fresh waters. These findings suggest that the diversity of the Ponto–Caspian crustaceans has been underestimated and that species regarded as euryhaline are often composed of distinct evolutionary groups whose taxonomic status should be reevaluated.


2013 ◽  
Vol 182 (4) ◽  
pp. 494-513 ◽  
Author(s):  
Stacy O. Scholle ◽  
Rolf J. F. Ypma ◽  
Alun L. Lloyd ◽  
Katia Koelle

1981 ◽  
Vol 1 (11) ◽  
pp. 972-982 ◽  
Author(s):  
D J Cummings ◽  
J L Laping

Previously we showed that the mitochondrial deoxyribonucleic acid (DNA) from Paramecium aurelia consists of a linear genome and that replication of this genome is initiated at one terminus and proceeds unidirectionally to the other terminus. Analyses of mitochondria from four closely related species (1, 4, 5, and 7) indicated that the species 1, 5, and 7 DNAs are essentially completely homologous but that the species 4 mitochondrial DNA is only 40 to 50% homologous with that from species 1. The major regions of homology are those containing the genes for ribosomal ribonucleic acid (RNA). To understand the replication and organization of the linear mitochondrial genome better, we compared species 1 (Paramecium primaurelia) and 4 (Paramecium tetraaurelia) DNAs with regard to restriction fragment mapping and homology between initiation regions; we also identified the sites of the genes for ribosomal RNA. In general, the structures of the species 1 and 4 mitochondrial genomes were quite similar. Each ribosomal RNA gene was present in one copy per genome, with the large ribosomal RNA gene located near the terminal region of replication and the small ribosomal RNA gene located more centrally. These two genes were separated by about 10 kilobases in the species 1 genome and by about 12 kilobases in the species 4 genome. In contrast to our previous findings, by using nonstringent hybridization conditions we detected homology between the species 1 and 4 DNA fragments containing the initiation regions. We constructed recombinant DNA clones for many fragments, especially those containing the initiation region and the ribosomal RNA genes. We also constructed restriction enzyme maps for six enzymes for both P. primaurelia and P. tetraaurelia.


Sign in / Sign up

Export Citation Format

Share Document