Fast speciations and slow genes: uncovering the root of living canids

2019 ◽  
Vol 129 (2) ◽  
pp. 492-504 ◽  
Author(s):  
Alessandra P Lamarca ◽  
Carlos G Schrago

Abstract Despite ongoing efforts relying on computationally intensive tree-building methods and large datasets, the deeper phylogenetic relationships between living canid genera remain controversial. We demonstrate that this issue arises fundamentally from the uncertainty of root placement as a consequence of the short length of the branch connecting the major canid clades, which probably resulted from a fast radiation during the early diversification of extant Canidae. Using both nuclear and mitochondrial genes, we investigate the position of the canid root and its consistency by using three rooting methods. We find that mitochondrial genomes consistently retrieve a root node separating the tribe Canini from the remaining canids, whereas nuclear data mostly recover a root that places the Urocyon foxes as the sister lineage of living canids. We demonstrate that, to resolve the canid root, the nuclear segments sequenced so far are significantly less informative than mitochondrial genomes. We also propose that short intervals between speciations obscure the place of the true root, because methods are susceptible to stochastic error in the presence of short internal branches near the root.

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2673
Author(s):  
Jeffrey P. Mower ◽  
Lilly Hanley ◽  
Kirsten Wolff ◽  
Natalia Pabón-Mora ◽  
Favio González

Aragoa, comprising 19 high-altitude North Andean species, is one of three genera in the Plantagineae (Plantaginaceae, Lamiales), along with Littorella and Plantago. Based primarily on plastid data and nuclear ITS, Aragoa is sister to a clade of Littorella + Plantago, but Plantagineae relationships have yet to be assessed using multigene datasets from the nuclear and mitochondrial genomes. Here, complete mitogenomes were assembled for two species of Aragoa (A. abietina and A. cleefii). The mitogenomes of both species have a typical suite of genes for 34 proteins, 17 tRNAs, and three rRNAs. The A. abietina mitogenome assembled into a simple circular map, with no large repeats capable of producing alternative isoforms. The A. cleefii mitogenomic map was more complex, involving two circular maps bridged by a substoichiometric linear fragment. Phylogenetics of three mitochondrial genes or the nuclear rRNA repeat placed Aragoa as sister to Littorella + Plantago, consistent with previous studies. However, P. nubicola, the sole representative of subg. Bougueria, was nested within subg. Psyllium based on the mitochondrial and nuclear data, conflicting with plastid-based analyses. Phylogenetics of the nuclear rRNA repeat provided better resolution overall, whereas relationships from mitochondrial data were hindered by extensive substitution rate variation among lineages.


2019 ◽  
Vol 11 (10) ◽  
pp. 2824-2849 ◽  
Author(s):  
Paweł Mackiewicz ◽  
Adam Dawid Urantówka ◽  
Aleksandra Kroczak ◽  
Dorota Mackiewicz

Abstract Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representatives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of paraphyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. Phylogenetic analyses based on CR sequences subjected to the complex evolution can produce tree topologies inconsistent with real evolutionary relationships between species. Passerines with two CRs showed a higher metabolic rate in relation to their body mass.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9309
Author(s):  
Viktoria Yu Shtratnikova ◽  
Mikhail I. Schelkunov ◽  
Aleksey A. Penin ◽  
Maria D. Logacheva

Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar in these two categories is still open. The plastid genomes of nonphotosynthetic plants are well characterized, and they exhibit similar patterns of reduction in the two groups. In contrast, little is known about the mitochondrial genomes of MHT plants. We report the structure of the mitochondrial genome of Hypopitys monotropa, a MHT member of Ericaceae, and the expression of its genes. In contrast to its highly reduced plastid genome, the mitochondrial genome of H. monotropa is larger than that of its photosynthetic relative Vaccinium macrocarpon, and its complete size is ~810 Kb. We observed an unusually long repeat-rich structure of the genome that suggests the existence of linear fragments. Despite this unique feature, the gene content of the H. monotropa mitogenome is typical of flowering plants. No acceleration of substitution rates is observed in mitochondrial genes, in contrast to previous observations in parasitic non-photosynthetic plants. Transcriptome sequencing revealed the trans-splicing of several genes and RNA editing in 33 of 38 genes. Notably, we did not find any traces of horizontal gene transfer from fungi, in contrast to plant parasites, which extensively integrate genetic material from their hosts.


2021 ◽  
Author(s):  
Benjamin M. Anderson ◽  
Kirsten Krause ◽  
Gitte Petersen

Background: The intimate association between parasitic plants and their hosts favours the exchange of genetic material, potentially leading to horizontal gene transfer (HGT) between plants. With the recent publication of several parasitic plant nuclear genomes, there has been considerable focus on such non-sexual exchange of genes. To enhance the picture on HGT events in a widely distributed parasitic genus, Cuscuta (dodders), we assembled and analyzed the organellar genomes of two recently sequenced species, C. australis and C. campestris, making this the first account of complete mitochondrial genomes (mitogenomes) for this genus. Results: The mitogenomes are 265,696 and 275,898 bp in length and contain a typical set of mitochondrial genes, with ten missing or pseudogenized genes often lost from angiosperm mitogenomes. Each mitogenome also possesses a structurally unusual ccmFC gene, which exhibits splitting of one exon and a shift to trans-splicing of its intron. Based on phylogenetic analysis of mitochondrial genes from across angiosperms and similarity-based searches, there is little to no indication of HGT into the Cuscuta mitogenomes. A few candidate regions for plastome-to-mitogenome transfer were identified, with one suggestive of possible HGT. Conclusions: The lack of HGT is surprising given examples from the nuclear genomes, and may be due in part to the relatively small size of our Cuscuta mitogenomes, limiting the capacity to integrate foreign sequences.


2017 ◽  
Author(s):  
Arunas L Radzvilavicius ◽  
Hanna Kokko ◽  
Joshua Christie

AbstractMitochondria are ATP-producing organelles of bacterial ancestry that played a key role in the origin and early evolution of complex eukaryotic cells. Most modern eukaryotes transmit mitochondrial genes uniparentally, often without recombination among genetically divergent organelles. While this asymmetric inheritance maintains the efficacy of purifying selection at the level of the cell, the absence of recombination could also make the genome susceptible to Muller’s ratchet. How mitochondria escape this irreversible defect accumulation is a fundamental unsolved question. Occasional paternal leakage could in principle promote recombination, but it would also compromise the purifying-selection benefits of uniparental inheritance. We assess this tradeoff using a stochastic population-genetic model. In the absence of recombination, uniparental inheritance of freely segregating genomes mitigates mutational erosion, while paternal leakage exacerbates the ratchet effect. Mitochondrial fusion-fission cycles ensure independent genome segregation, improving purifying selection. Paternal leakage provides opportunity for recombination to slow down the mutation accumulation, but always at a cost of increased steady-state mutation load. Our findings indicate that random segregation of mitochondrial genomes under uniparental inheritance can effectively combat the mutational meltdown, and that homologous recombination under paternal leakage might not be needed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Isabela G. L. Seiblitz ◽  
Kátia C. C. Capel ◽  
Jarosław Stolarski ◽  
Zheng Bin Randolph Quek ◽  
Danwei Huang ◽  
...  

AbstractEvolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging “Basal” lineage remains poorly studied compared to “Robust” and “Complex” corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confirm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as well as its microstructural differences with Gardineriidae. The fact that both families share features with family Kilbuchophylliidae ultimately points towards a Middle Ordovician origin for Scleractinia.


2018 ◽  
Vol 4 ◽  
Author(s):  
Helen E. Robertson ◽  
Philipp H. Schiffer ◽  
Maximilian J. Telford

Abstract The Dicyemida and Orthonectida are two groups of tiny, simple, vermiform parasites that have historically been united in a group named the Mesozoa. Both Dicyemida and Orthonectida have just two cell layers and appear to lack any defined tissues. They were initially thought to be evolutionary intermediates between protozoans and metazoans but more recent analyses indicate that they are protostomian metazoans that have undergone secondary simplification from a complex ancestor. Here we describe the first almost complete mitochondrial genome sequence from an orthonectid, Intoshia linei, and describe nine and eight mitochondrial protein-coding genes from Dicyema sp. and Dicyema japonicum, respectively. The 14 247 base pair long I. linei sequence has typical metazoan gene content, but is exceptionally AT-rich, and has a unique gene order. The data we have analysed from the Dicyemida provide very limited support for the suggestion that dicyemid mitochondrial genes are found on discrete mini-circles, as opposed to the large circular mitochondrial genomes that are typical of the Metazoa. The cox1 gene from dicyemid species has a series of conserved, in-frame deletions that is unique to this lineage. Using cox1 genes from across the genus Dicyema, we report the first internal phylogeny of this group.


2004 ◽  
Vol 03 (04) ◽  
pp. 317-329 ◽  
Author(s):  
Imad Rahal ◽  
Dongmei Ren ◽  
William Perrizo

Association rule mining (ARM) is the data-mining process for finding all association rules in datasets matching user-defined measures of interest such as support and confidence. Usually, ARM proceeds by mining all frequent itemsets — a step known to be very computationally intensive — from which rules are then derived in a straight forward manner. In general, mining all frequent itemsets prunes the space by using the downward closure (or anti-monotonicity) property of support which states that no itemset can be frequent unless all of its subsets are frequent. A large number of papers have addressed the problem of ARM but not many of them have focused on scalability over very large datasets (i.e. when datasets contain a very large number of transactions). In this paper, we propose a new model for representing data and mining frequent itemsets that is based on the P-tree technology for compression and faster logical operations over vertically structured data and on set enumeration trees for fast itemset enumeration. Experimental results presented hereinafter show big improvements for our approach over large datasets when compared to other contemporary approaches in the literature.


Genome ◽  
2009 ◽  
Vol 52 (4) ◽  
pp. 299-307 ◽  
Author(s):  
Grzegorz Bartoszewski ◽  
Piotr Gawronski ◽  
Marek Szklarczyk ◽  
Henk Verbakel ◽  
Michael J. Havey

Cucumber ( Cucumis sativus ) has one of the largest mitochondrial genomes known among all eukaryotes, due in part to the accumulation of short 20 to 60 bp repetitive DNA motifs. Recombination among these repetitive DNAs produces rearrangements affecting organization and expression of mitochondrial genes. To more efficiently identify rearrangements in the cucumber mitochondrial DNA, we built two nonoverlapping 800 and 220 kb BAC contigs and assigned major mitochondrial genes to these BACs. Polymorphism carried on the largest BAC contig was used to confirm paternal transmission. Mitochondrial genes were distributed across BACs and physically distant, although occasional clustering was observed. Introns in the nad1, nad4, and nad7 genes were larger than those reported in other plants, due in part to accumulation of short repetitive DNAs and indicating that increased intron sizes contributed to mitochondrial genome expansion in cucumber. Mitochondrial genes atp6 and atp9 are physically close to each other and cotranscribed. These physical contigs will be useful for eventual sequencing of the cucumber mitochondrial DNA, which can be exploited to more efficiently screen for unique rearrangements affecting mitochondrial gene expression.


1993 ◽  
Vol 71 (5) ◽  
pp. 645-660 ◽  
Author(s):  
Linda Bonen ◽  
Gregory G. Brown

Flowering plants have complex mitochondrial genomes that exhibit remarkable plasticity in size and structure. Their recombinogenic nature contributes to a mosaic of DNA sequences, both endogenous and exogenous in origin. This review focuses on the effects that DNA rearrangements have on the organization, structure, and expression of mitochondrial genes in both normal and mutant plants. The association of mitochondrial DNA recombinational events with the phenomenon of cytoplasmic male sterility is highlighted. Key words: chimeric genes, cytoplasmic male sterility, DNA rearrangements, gene expression, genome evolution, mitochondrial genes, nuclear restorer genes.


Sign in / Sign up

Export Citation Format

Share Document