scholarly journals Beneficial Role of Fruits, Their Juices, and Freeze-Dried Powders on Inflammatory Bowel Disease and Related Dysbiosis

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Maria Rosaria Perri ◽  
Carmen Romano ◽  
Mariangela Marrelli ◽  
Ludovica Zicarelli ◽  
Claudia-Crina Toma ◽  
...  

Inflammatory bowel disease (IBD) is a group of complex chronic inflammatory conditions affecting the gastrointestinal tract. It is linked to a number of genetic and environmental factors able to perturb the immune-microbiome axis. Diet is the most investigated variable both for its role in the etiology of IBD and for its beneficial potential in the treatment of the symptoms. Dietary products may influence intestinal inflammation through different mechanisms of action, such as the modulation of inflammatory mediators, the alteration of gene expression, changes in gut permeability, and modifications in enteric flora composition. A consisting number of studies deal with the link between nutrition and microbial community, and particular attention is paid to plant-based foods. The effects of the dietary intake of different fruits have been investigated so far. This review aims to present the most recent studies concerning the beneficial potential of fruit consumption on human gut microbiota. Investigated plant species are described, and obtained results are presented and discussed in order to provide an overview of both in vitro and in vivo effects of fruits, their juices, and freeze-dried powders.

2020 ◽  
Vol 295 (13) ◽  
pp. 4237-4251 ◽  
Author(s):  
Jie Zhang ◽  
Min Xu ◽  
Weihua Zhou ◽  
Dejian Li ◽  
Hong Zhang ◽  
...  

Parkinson disease autosomal recessive, early onset 7 (PARK7 or DJ-1) is involved in multiple physiological processes and exerts anti-apoptotic effects on multiple cell types. Increased intestinal epithelial cell (IEC) apoptosis and excessive activation of the p53 signaling pathway is a hallmark of inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). However, whether DJ-1 plays a role in colitis is unclear. To determine whether DJ-1 deficiency is involved in the p53 activation that results in IEC apoptosis in colitis, here we performed immunostaining, real-time PCR, and immunoblotting analyses to assess DJ-1 expression in human UC and CD samples. In the inflamed intestines of individuals with IBD, DJ-1 expression was decreased and negatively correlated with p53 expression. DJ-1 deficiency significantly aggravated colitis, evidenced by increased intestinal inflammation and exacerbated IEC apoptosis. Moreover, DJ-1 directly interacted with p53, and reduced DJ-1 levels increased p53 levels both in vivo and in vitro and were associated with decreased p53 degradation via the lysosomal pathway. We also induced experimental colitis with dextran sulfate sodium in mice and found that compared with DJ-1−/− mice, DJ-1−/−p53−/− mice have reduced apoptosis and inflammation and increased epithelial barrier integrity. Furthermore, pharmacological inhibition of p53 relieved inflammation in the DJ-1−/− mice. In conclusion, reduced DJ-1 expression promotes inflammation and IEC apoptosis via p53 in colitis, suggesting that the modulation of DJ-1 expression may be a potential therapeutic strategy for managing colitis.


2020 ◽  
Vol 26 (12) ◽  
pp. 1856-1868
Author(s):  
Stefanie Derer ◽  
Ann-Kathrin Brethack ◽  
Carlotta Pietsch ◽  
Sebastian T Jendrek ◽  
Thomas Nitzsche ◽  
...  

Abstract Adherent-invasive Escherichia coli have been suggested to play a pivotal role within the pathophysiology of inflammatory bowel disease (IBD). Autoantibodies against distinct splicing variants of glycoprotein 2 (GP2), an intestinal receptor of the bacterial adhesin FimH, frequently occur in IBD patients. Hence, we aimed to functionally characterize GP2-directed autoantibodies as a putative part of IBD’s pathophysiology. Ex vivo, GP2-splicing variant 4 (GP2#4) but not variant 2 was expressed on intestinal M or L cells with elevated expression patterns in IBD patients. The GP2#4 expression was induced in vitro by tumor necrosis factor (TNF)-α. The IBD-associated GP2 autoantibodies inhibited FimH binding to GP2#4 and were decreased in anti-TNFα-treated Crohn’s disease patients with ileocolonic disease manifestation. In vivo, mice immunized against GP2 before infection with adherent-invasive bacteria displayed exacerbated intestinal inflammation. In summary, autoimmunity against intestinal expressed GP2#4 results in enhanced attachment of flagellated bacteria to the intestinal epithelium and thereby may drive IBD’s pathophysiology.


Author(s):  
Michał Sienkiewicz ◽  
Patrycja Szymańska ◽  
Jakub Fichna

ABSTRACT Inflammatory bowel disease (IBD) is a group of chronic relapsing disorders whose etiology has not been fully explained. Therefore, available therapeutic approaches for IBD patients are still insufficient. Current treatment strategies are targeted to immune system dysfunctions, often associated with alternations in the microbiota, which contribute to the development of chronic intestinal inflammation. Therapeutics include anti-inflammatory drugs such as aminosalicylates and corticosteroids, immunosuppressive agents, antibiotics, and biological agents such as infliximab and vedolizumab. Auxiliary therapies involve a balanced and personalized diet, healthy lifestyle, avoiding stress, as well as dietary supplements. In this review, we discuss the use of bovine colostrum (BC) as a therapeutic agent, including its advantages and contraindications. We summarize our knowledge on well-researched BC constituents and their effects on the gastrointestinal tract as evidenced in in vitro and in vivo studies.


2017 ◽  
Vol 31 (1) ◽  
pp. 85-97 ◽  
Author(s):  
Sandra Nunes ◽  
Francesca Danesi ◽  
Daniele Del Rio ◽  
Paula Silva

AbstractDespite the fact that inflammatory bowel disease (IBD) has still no recognised therapy, treatments which have proven at least mildly successful in improving IBD symptoms include anti-inflammatory drugs and monoclonal antibodies targeting pro-inflammatory cytokines. Resveratrol, a natural (poly)phenol found in grapes, red wine, grape juice and several species of berries, has been shown to prevent and ameliorate intestinal inflammation. Here, we discuss the role of resveratrol in the improvement of inflammatory disorders involving the intestinal mucosa. The present review covers three specific aspects of resveratrol in the framework of inflammation: (i) its content in food; (ii) its intestinal absorption and metabolism; and (iii) its anti-inflammatory effects in the intestinal mucosa in vitro and in the very few in vivo studies present to date. Actually, if several studies have shown that resveratrol may down-regulate mediators of intestinal immunity in rodent models, only two groups have performed intervention studies in human subjects using resveratrol as an agent to improve IBD conditions. The effects of resveratrol should be further investigated by conducting well-designed clinical trials, also taking into account different formulations for the delivery of the bioactive compound.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rayko Evstatiev ◽  
Adam Cervenka ◽  
Tina Austerlitz ◽  
Gunther Deim ◽  
Maximilian Baumgartner ◽  
...  

AbstractInflammatory bowel disease is a group of conditions with rising incidence caused by genetic and environmental factors including diet. The chelator ethylenediaminetetraacetate (EDTA) is widely used by the food and pharmaceutical industry among numerous other applications, leading to a considerable environmental exposure. Numerous safety studies in healthy animals have revealed no relevant toxicity by EDTA. Here we show that, in the presence of intestinal inflammation, EDTA is surprisingly capable of massively exacerbating inflammation and even inducing colorectal carcinogenesis at doses that are presumed to be safe. This toxicity is evident in two biologically different mouse models of inflammatory bowel disease, the AOM/DSS and the IL10−/− model. The mechanism of this effect may be attributed to disruption of intercellular contacts as demonstrated by in vivo confocal endomicroscopy, electron microscopy and cell culture studies. Our findings add EDTA to the list of food additives that might be detrimental in the presence of intestinal inflammation, but the toxicity of which may have been missed by regulatory safety testing procedures that utilize only healthy models. We conclude that the current use of EDTA especially in food and pharmaceuticals should be reconsidered. Moreover, we suggest that intestinal inflammatory models should be implemented in the testing of food additives to account for the exposure of this primary organ to environmental and dietary stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yashar Houshyar ◽  
Luca Massimino ◽  
Luigi Antonio Lamparelli ◽  
Silvio Danese ◽  
Federica Ungaro

Inflammatory Bowel Disease (IBD) is a multifaceted class of relapsing-remitting chronic inflammatory conditions where microbiota dysbiosis plays a key role during its onset and progression. The human microbiota is a rich community of bacteria, viruses, fungi, protists, and archaea, and is an integral part of the body influencing its overall homeostasis. Emerging evidence highlights dysbiosis of the archaeome and mycobiome to influence the overall intestinal microbiota composition in health and disease, including IBD, although they remain some of the least understood components of the gut microbiota. Nonetheless, their ability to directly impact the other commensals, or the host, reasonably makes them important contributors to either the maintenance of the mucosal tissue physiology or to chronic intestinal inflammation development. Therefore, the full understanding of the archaeome and mycobiome dysbiosis during IBD pathogenesis may pave the way to the discovery of novel mechanisms, finally providing innovative therapeutic targets that can soon implement the currently available treatments for IBD patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rita Lippai ◽  
Apor Veres-Székely ◽  
Erna Sziksz ◽  
Yoichiro Iwakura ◽  
Domonkos Pap ◽  
...  

AbstractRecently the role of Parkinson’s disease 7 (PARK7) was studied in gastrointestinal diseases, however, the complex role of PARK7 in the intestinal inflammation is still not completely clear. Expression and localization of PARK7 were determined in the colon biopsies of children with inflammatory bowel disease (IBD), in the colon of dextran sodium sulphate (DSS) treated mice and in HT-29 colonic epithelial cells treated with interleukin (IL)-17, hydrogen peroxide (H2O2), tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β or lipopolysaccharide (LPS). Effect of PARK7 on the synthesis of IBD related cytokines was determined using PARK7 gene silenced HT-29 cells and 3,4,5-trimethoxy-N-(4-(8-methylimidazo(1,2-a)pyridine-2-yl)phenyl)benzamide (Comp23)—compound increasing PARK7 activity—treated mice with DSS-colitis. PARK7 expression was higher in the mucosa of children with Crohn’s disease compared to that of controls. While H2O2 and IL-17 treatment increased, LPS, TNF-α or TGF-β treatment decreased the PARK7 synthesis of HT-29 cells. PARK7 gene silencing influenced the synthesis of IL1B, IL6, TNFA and TGFB1 in vitro. Comp23 treatment attenuated the ex vivo permeability of colonic sacs, the clinical symptoms, and mucosal expression of Tgfb1, Il1b, Il6 and Il10 of DSS-treated mice. Our study revealed the role of PARK7 in the regulation of IBD-related inflammation in vitro and in vivo, suggesting its importance as a future therapeutic target.


2016 ◽  
Vol 26 (19) ◽  
pp. 4587-4591 ◽  
Author(s):  
Suhrid Banskota ◽  
Han-eol Kang ◽  
Dong-Guk Kim ◽  
Sang Won Park ◽  
Hyeonjin Jang ◽  
...  

2016 ◽  
Vol 116 (09) ◽  
pp. 486-495 ◽  
Author(s):  
Marco Guerci ◽  
Paola Simeone ◽  
Sandro Ardizzone ◽  
Alessandro Massari ◽  
Paolo Giuffrida ◽  
...  

SummaryPatients with inflammatory bowel disease (IBD) are at higher risk of venous thromboembolism and coronary artery disease despite having a lower burden of traditional risk factors. Platelets from IBD patients release more soluble CD40 ligand (CD40L), and this has been implicated in IBD platelet hyper-activation. We here measured the urinary F2-isoprostane 8-iso-prostaglandin (PG)2α (8-iso-PGF2α), urinary 11–dehydro–thromboxane (TX) B2 (11-dehydro–TXB2) and plasma CD40L in IBD patients, and explored the in vitro action of anti-tumour necrosis factor (TNF)–α antibody infliximab on IBD differentiating megakaryocytes. Urinary and blood samples were collected from 124 IBD patients and 37 healthy subjects. Thirteen IBD patients were also evaluated before and after 6–week infliximab treatment. The in vitro effect of infliximab on patient-derived megakaryocytes was evaluated by immunoflorescence microscopy and by flow cytometry. IBD patients had significantly (p<0.0001) higher urinary 8–iso–PGF2α and 11–dehydro–TXB2 as well as plasma CD40L levels than controls, with active IBD patients displaying higher urinary and plasma values when compared to inactive patients in remission. A 6-week treatment with infliximab was associated with a significant reduction of the urinary excretion of 8–iso–PGF2α and 11–dehydro–TXB2 (p=0.008) and plasma CD40L (p=0.001). Infliximab induced significantly rescued pro-platelet formation by megakaryocytes derived from IBD patients but not from healthy controls. Our findings provide evidence for enhanced in vivo TX–dependent platelet activation and lipid peroxidation in IBD patients. Anti-TNF–α therapy with infliximab down-regulates in vivo isoprostane generation and TX biosynthesis in responder IBD patients. Further studies are needed to clarify the implication of infliximab induced-proplatelet formation from IBD megakaryocytes.Supplementary Material to this article is available online at www.thrombosis-online.com.


Sign in / Sign up

Export Citation Format

Share Document