scholarly journals Photosynthetic Responses of Canola and Wheat to Elevated Levels of CO2, O3 and Water Deficit in Open-Top Chambers

Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 171 ◽  
Author(s):  
Bheki G. Maliba ◽  
Prabhu M. Inbaraj ◽  
Jacques M. Berner

The effects of elevated CO2 (700 ppm) and O3 (80 ppb) alone and in combination on the photosynthetic efficiency of canola and wheat plants were investigated in open-top chambers (OTCs). The plants were fumigated for four weeks under well-watered and water-stressed (water deficit) conditions. The fast chlorophyll a fluorescence transients were measured after 2 and 4 weeks of fumigation, as well as in control plants, and analyzed by the JIP-test, which is a non-destructive, non-invasive, informative, very fast and inexpensive technique used to evaluate the changes in photosynthetic efficiency. Biomass measurements were taken only after 4 weeks of fumigation. The performance index (PItotal), an overall parameter calculated from the JIP-test formulae, was reduced by elevated CO2 and O3 under well-watered conditions. In the absence of any other treatment, water stress caused a decrease of the PItotal, and it was partly eliminated by fumigation with elevated CO2 and CO2 + O3. This finding was also supported by the biomass results, which revealed a higher biomass under elevated CO2 and CO2 + O3. The decrease in biomass induced by elevated O3 was likely caused by the decline of photosynthetic efficiency. Our findings suggest that elevated CO2 reduces the drought effect both in the absence and presence of O3 in canola and wheat plants. The study also indicates that elevated O3 would pose a threat in future to agricultural crops.

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 675
Author(s):  
Mitsutoshi Kitao ◽  
Evgenios Agathokleous ◽  
Kenichi Yazaki ◽  
Masabumi Komatsu ◽  
Satoshi Kitaoka ◽  
...  

Plant growth is not solely determined by the net photosynthetic rate (A), but also influenced by the amount of leaves as a photosynthetic apparatus. To evaluate growth responses to CO2 and O3, we investigated the effects of elevated CO2 (550–560 µmol mol−1) and O3 (52 nmol mol−1; 1.7 × ambient O3) on photosynthesis and biomass allocation in seedlings of Japanese white birch (Betula platyphylla var. japonica) grown in a free-air CO2 and O3 exposure system without any limitation of root growth. Total biomass was enhanced by elevated CO2 but decreased by elevated O3. The ratio of root to shoot (R:S ratio) showed no difference among the treatment combinations, suggesting that neither elevated CO2 nor elevated O3 affected biomass allocation in the leaf. Accordingly, photosynthetic responses to CO2 and O3 might be more important for the growth response of Japanese white birch. Based on A measured under respective growth CO2 conditions, light-saturated A at a light intensity of 1500 µmol m−2 s−1 (A1500) in young leaves (ca. 30 days old) exhibited no enhancement by elevated CO2 in August, suggesting photosynthetic acclimation to elevated CO2. However, lower A1500 was observed in old leaves (ca. 60 days old) of plants grown under elevated O3 (regulated to be twice ambient O3). Conversely, light-limited A measured under a light intensity of 200 µmol m−2 s−1 (A200) was significantly enhanced by elevated CO2 in young leaves, but suppressed by elevated O3 in old leaves. Decreases in total biomass under elevated O3 might be attributed to accelerated leaf senescence by O3, indicated by the reduced A1500 and A200 in old leaves. Increases in total biomass under elevated CO2 might be attributed to enhanced A under high light intensities, which possibly occurred before the photosynthetic acclimation observed in August, and/or enhanced A under limiting light intensities.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
M. Musse ◽  
G. Hajjar ◽  
N. Ali ◽  
B. Billiot ◽  
G. Joly ◽  
...  

Abstract Background Drought is a major consequence of global heating that has negative impacts on agriculture. Potato is a drought-sensitive crop; tuber growth and dry matter content may both be impacted. Moreover, water deficit can induce physiological disorders such as glassy tubers and internal rust spots. The response of potato plants to drought is complex and can be affected by cultivar type, climatic and soil conditions, and the point at which water stress occurs during growth. The characterization of adaptive responses in plants presents a major phenotyping challenge. There is therefore a demand for the development of non-invasive analytical techniques to improve phenotyping. Results This project aimed to take advantage of innovative approaches in MRI, phenotyping and molecular biology to evaluate the effects of water stress on potato plants during growth. Plants were cultivated in pots under different water conditions. A control group of plants were cultivated under optimal water uptake conditions. Other groups were cultivated under mild and severe water deficiency conditions (40 and 20% of field capacity, respectively) applied at different tuber growth phases (initiation, filling). Water stress was evaluated by monitoring soil water potential. Two fully-equipped imaging cabinets were set up to characterize plant morphology using high definition color cameras (top and side views) and to measure plant stress using RGB cameras. The response of potato plants to water stress depended on the intensity and duration of the stress. Three-dimensional morphological images of the underground organs of potato plants in pots were recorded using a 1.5 T MRI scanner. A significant difference in growth kinetics was observed at the early growth stages between the control and stressed plants. Quantitative PCR analysis was carried out at molecular level on the expression patterns of selected drought-responsive genes. Variations in stress levels were seen to modulate ABA and drought-responsive ABA-dependent and ABA-independent genes. Conclusions This methodology, when applied to the phenotyping of potato under water deficit conditions, provides a quantitative analysis of leaves and tubers properties at microstructural and molecular levels. The approaches thus developed could therefore be effective in the multi-scale characterization of plant response to water stress, from organ development to gene expression.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2200
Author(s):  
Ruben X. G. Silva ◽  
Paulo Cartaxana ◽  
Ricardo Calado

Berghia stephanieae is a stenophagous sea slug that preys upon glass anemones, such as Exaiptasia diaphana. Glass anemones host photosynthetic dinoflagellate endosymbionts that sea slugs ingest when consuming E. diaphana. However, the prevalence of these photosynthetic dinoflagellate endosymbionts in sea slugs appears to be short-lived, particularly if B.stephanieae is deprived of prey that host these microalgae (e.g., during bleaching events impacting glass anemones). In the present study, we investigated this scenario, along with food deprivation, and validated the use of a non-invasive and non-destructive approach employing chlorophyll fluorescence as a proxy to monitor the persistence of the association between sea slugs and endosymbiotic photosynthetic dinoflagellates acquired through the consumption of glass anemones. Berghia stephanieae deprived of a trophic source hosting photosynthetic dinoflagellate endosymbionts (e.g., through food deprivation or by feeding on bleached E. diaphana) showed a rapid decrease in minimum fluorescence (Fo) and photosynthetic efficiency (Fv/Fm) when compared to sea slugs fed with symbiotic anemones. A complete loss of endosymbionts was observed within 8 days, confirming that no true symbiotic association was established. The present work opens a new window of opportunity to rapidly monitor in vivo and over time the prevalence of associations between sea slugs and photosynthetic dinoflagellate endosymbionts, particularly during bleaching events that prevent sea slugs from incorporating new microalgae through trophic interactions.


Author(s):  
Alberto Soares de Melo ◽  
Allisson Rafael Ferreira da Silva ◽  
Alexson Filgueiras Dutra ◽  
Wellison Filgueiras Dutra ◽  
Marcos Eric Barbosa Brito ◽  
...  

Cowpea is a crop with great economic, social and food importance in semi-arid regions, but its production is drastically reduced by the water deficit in these regions, requiring better management strategies that allow the crop’s production. This study therefore aimed to evaluate the photosynthetic efficiency and production of cowpea cultivars under deficit irrigation replacement levels. The experiment tested three cowpea genotypes (G1 = ‘BRS Aracé’, G2 = ‘BR 17 Gurguéia’ and G3 = ‘BRS Marataoã’) and four irrigation depths (40, 60, 80 and 100% of ETc), resulting in a 3 x 4 factorial scheme, arranged in randomized complete blocks design with four replicates. During the experiment, the gas exchanges, chlorophyll a fluorescence and production of the cowpea genotypes under deficit irrigation were evaluated. Carbon fixation in the photosynthetic metabolism of cowpea plants was reduced by accentuated water deficit, regardless of the genotype. The low stress severity was indicated by the lack of effects on chlorophyll fluorescence, indicating that the reduction in the rate of carbon assimilation was due to the stomatal effects. The irrigation with 80% of ETc can be used in the cultivation of the respective cultivars, but with small losses in the production. Among the genotypes, ‘BRS Marataoã’ stands out with respect to yield, with higher values for weight of pods and green beans.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 149
Author(s):  
Mohammed Bouskout ◽  
Mohammed Bourhia ◽  
Mohamed Najib Al Feddy ◽  
Hanane Dounas ◽  
Ahmad Mohammad Salamatullah ◽  
...  

Agricultural yields are under constant jeopardy as climate change and abiotic pressures spread worldwide. Using rhizospheric microbes as biostimulants/biofertilizers is one of the best ways to improve agro-agriculture in the face of these things. The purpose of this experiment was to investigate whether a native arbuscular mycorrhizal fungi inoculum (AMF-complex) might improve caper (Capparis spinosa) seedlings’ nutritional status, their morphological/growth performance and photosynthetic efficiency under water-deficit stress (WDS). Thus, caper plantlets inoculated with or without an AMF complex (+AMF and −AMF, respectively) were grown under three gradually increasing WDS regimes, i.e., 75, 50 and 25% of field capacity (FC). Overall, measurements of morphological traits, biomass production and nutrient uptake (particularly P, K+, Mg2+, Fe2+ and Zn2+) showed that mycorrhizal fungi inoculation increased these variables significantly, notably in moderate and severe WDS conditions. The increased WDS levels reduced the photochemical efficiency indices (Fv/Fm and Fv/Fo) in −AMF plants, while AMF-complex application significantly augmented these parameters. Furthermore, the photosynthetic pigments content was substantially higher in +AMF seedlings than −AMF controls at all the WDS levels. Favorably, at 25% FC, AMF-colonized plants produce approximately twice as many carotenoids as non-colonized ones. In conclusion, AMF inoculation seems to be a powerful eco-engineering strategy for improving the caper seedling growth rate and drought tolerance in harsh environments.


2019 ◽  
Vol 12 (1) ◽  
pp. 73
Author(s):  
Mokhtar Baraket ◽  
Sondes Fkiri ◽  
Ibtissam Taghouti ◽  
Salma Sai Kachout ◽  
Amel Ennajah ◽  
...  

In north Tunisia, the Quercus suber L. forests have shown a great decline indices as well as a non-natural regeneration. The climate changes could accentuate this unappreciated situation. In this study, the effect of water deficit on physiological behavior of Quercus suber seedlings was investigated. Photosynthetic responses of 15 months old Cork oak seedlings grown for 30 days under 40% and 80% soil water water content (control) were evaluated. Results showed a negative effect of water deficit and a positive effect of the intercellular CO2 concentration increase both on photosynthesis and transpiration. Stomata conductance might play a major role in balancing gas exchanges between the leaf and its environment. Moreover, global warming could negatively affect carbon uptake of Cork oak species in northern Tunisia. Elevated CO2 leaf content will benefit Cork oak growing under water deficit by decreasing both photoysnthesis and transpiration, which will decrease either the rate or the severity of water deficits, with limited effects on metabolism. the results suggest that high intercellular CO2 concentration could increase water use efficiency among Cork oak species.


2009 ◽  
Vol 6 (1) ◽  
pp. 25-31 ◽  
Author(s):  
S. Sharma ◽  
D. G. Williams

Abstract. In this study we explore the use of natural CO2 emissions in Yellowstone National Park (YNP) in Wyoming, USA to study responses of natural vegetation to elevated CO2 levels. Radiocarbon (14C) analysis of leaf biomass from a conifer (Pinus contortus; lodgepole pine) and an invasive, non-native herb (Linaria dalmatica; Dalmation toadflax) was used to trace the inputs of vent CO2 and quantify assimilation-weighted CO2 concentrations experienced by individual plants near vents and in comparable locations with no geologic CO2 exposure. The carbon and oxygen isotopic composition and nitrogen percent of leaf biomass from the same plants was used to investigate photosynthetic responses of these plants to naturally elevated atmospheric CO2 concentrations. The coupled shifts in carbon and oxygen isotope values suggest that dalmation toadflax responded to elevated CO2 exposure by increasing stomatal conductance with no change in photosynthetic capacity and lodgepole pine apparently responded by decreasing stomatal conductance and photosynthetic capacity. Lodgepole pine saplings exposed to elevated levels of CO2 likewise had reduced leaf nitrogen concentrations compared to plants with no enhanced CO2 exposure, further suggesting widespread and dominant conifer down-regulated photosynthetic capacity under elevated CO2 levels near geologic vents.


2000 ◽  
Vol 27 (12) ◽  
pp. 1119 ◽  
Author(s):  
Ad H.C.M. Schapendonk ◽  
Marcel van Oijen ◽  
Paul Dijkstra ◽  
C. Sander Pot ◽  
Wilco J.R.M. Jordi ◽  
...  

In two subsequent years, an early maturing potato cultivar with low leaf area index (LAI) and a late cultivar with high LAI were grown at concentrations of 350 and 700 L CO2 L–1 in open-top chambers. The average increase of tuber dry matter yield by elevated CO2 was 27% in 1995 and 49% in 1996. During the first weeks after planting, elevated CO2 stimulated the light-saturated rate of photosynthesis (Amax) of both cultivars by 80%. However, Amax under elevated CO2 declined to the level of the low-CO2 treatment in the course of the growing season. In 1995 this convergence due to acclimation of photosynthesis was completed within 6 weeks, but in 1996, acclimation proceeded until the end of the growing season. Photosynthetic acclimation was accompanied by a reduced Rubisco content, and was correlated more closely with accumulation of sucrose than of starch. From fluorescence measurements it was concluded that, in contrast to the carboxylation efficiency, the efficiency of photosynthetic reactions centers was not affected by acclimation to elevated CO2. The faster photosynthetic acclimation in 1995 coincided with overall lower values of Amax, crop growth rate and growth response to elevated CO2. It is shown that the indeterminate growth pattern of potato with its large sink capacity does not preclude acclimation. The effect of acclimation on yield was quantified by computer simulations. The simulated results indicated that photosynthetic acclimation reduced the positive effect of elevated CO2 on tuber yield by 50%.


Sign in / Sign up

Export Citation Format

Share Document