scholarly journals Performance of Dry-Seeded Rice Genotypes under Varied Soil Moisture Regimes and Foliar-Applied Hormones

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 539
Author(s):  
Rajinder Pal ◽  
Gulshan Mahajan ◽  
Virender Sardana ◽  
Bavita Asthir ◽  
Bhagirath Singh Chauhan

Plant hormones influence various physiological processes during the growth and development of plants, but their critical roles in influencing yield and antioxidant activities in dry-seeded rice (DSR) have not been adequately explored. This study aims to analyze the performance and antioxidant activity of contrasting genotypes of DSR in response to soil moisture regimes and foliar-applied hormones. The study comprised sixteen treatments that were evaluated under field conditions as per split-plot design in three replications. Treatments comprised combinations of two soil moisture tension regimes (10 kPa and 20 kPa) and two genotypes (PR-111, non-stay-green type and PR-123, stay-green type) applied to the main plots and foliar application of three hormones (gibberellic acid (GA3) 40 mg kg−1, abscisic acid (ABA) 20 mg kg−1, and cytokinin (CK) 40 mg kg−1)) and a control (unsprayed) to subplots. The non-stay-green genotype (PR-111) resulted in 34.6% more grain yield (6.48 t ha−1) than the stay-green genotype (PR-123) at the lower soil moisture tension regime (SMTR) (10 kPa) due to the increased number of filled grains per panicle and improvement in harvest index (HI). At the higher SMTR (20 kPa), the stay-green genotype (PR-123) produced 26.4% more grain yield (5.21 t ha−1) than non-stay green genotype (4.12 t ha−1) and showed enhanced superoxide dismutase (SOD) and peroxide dismutase (POD) activity that may have contributed in maintaining sink size through improved chlorophyll content. Grain yield (6.35 t ha−1) with foliar-applied GA3 (40 mg kg−1) at SMTR of 10 kPa was higher by 12.2% and 24.0% than with foliar-applied ABA (20 mg kg−1) and unsprayed treatments, respectively. Irrigation application at SMTR of 20 kPa and foliar application of ABA gave 24.1% higher grain yield (5.15 t ha−1) than the unsprayed treatment, but it was similar to foliar-applied GA3 and CK. This study implied that the stay-green genotype (PR-123) was more suitable under moisture stress conditions (20 kPa) in DSR, as it maintained sink size even under moisture stress conditions by improving dry matter translocation and enhancing SOD and POD activity. The study suggests the need to find out the endogenous level of these plant hormones in rice genotypes under a range of water regimes to develop high yielding and water use efficient genotypes of DSR.

1964 ◽  
Vol 15 (5) ◽  
pp. 729 ◽  
Author(s):  
D Aspinall ◽  
PB Nicholls ◽  
LH May

The effects of soil moisture stress on tillering, stem elongation, and grain yield of barley (cv. Prior) have been studied by subjecting the plants to periods of stress at different stages of development. Soil moisture stress treatments consisted of repeated short cycles of stress, single short cycles (both in large pots), or single long cycles (in large lysimeters). The data collected support the contention that the organ which is growing most rapidly at the time of a stress is the one most affected. Grain numbers per ear were seriously affected by stress occurring prior to anthesis, an effect probably associated with the process of spikelet initiation and, later, with the formation of the gametes. Grain size, on the other hand, was reduced more by stress at anthesis and shortly after. Elongation of the internodes was reduced mostly by stress at or just before earing, and was less seriously affected by earlier or later stress. Tillering, although being suppressed during a drought cycle, was actually stimulated upon rewatering. The effect was greater the earlier the period of stress, and was probably related to nutrient uptake and distribution within the plant.


1965 ◽  
Vol 45 (5) ◽  
pp. 419-427 ◽  
Author(s):  
E. N. Larter ◽  
M. Samii ◽  
F. W. Sosulski

A study was made of the effects of (2-chloroethyl) trimethylammonium chloride (CCC) applied to the varieties Parkland and Hannchen barley grown under controlled environmental conditions and predetermined soil moisture regimes. When applied to seedlings as either a soil drench or as a foliar spray, CCC retarded internode elongation thereby significantly reducing the height of plants as measured at maturity. A varietal difference in the response to a given treatment was evident with Parkland being more sensitive than Hannchen. Moreover, measured in terms of growth responses, application of CCC as a soil drench was more effective than as a foliar spray.Treatments in the range of 10−1–10−4 M significantly increased tiller number and seed yield on plants grown under a high moisture regime (daily watering). Under restricted soil moistures, however, neither grain yield nor plant weights (tops) were affected by CCC treatment. Treated plants grown under soil moisture stress used less water per unit weight of dry matter than did untreated plants.


2020 ◽  
Author(s):  
Soumya Kumar Sahoo ◽  
Goutam Kumar Dash ◽  
Arti Guhey ◽  
Mirza Jaynul Baig ◽  
Madhusmita Barik ◽  
...  

ABSTRACTRice production is severely threatened by drought stress in Eastern India. To develop drought tolerant varieties, selection of donors for breeding programme is crucial. Twenty one selected rice genotypes including both tolerant and sensitive to drought were grown under well-watered and drought stress conditions in dry seasons of two successive years of 2017 and 2018. Leaf water potential, relative water content displayed significant difference among the genotypes during vegetative screening. At reproductive stage drought screening, days to 50% flowering was delayed in all genotypes except N22 and Anjali (showed early flowering) however grain yield and other yield related traits decreased significantly compared to well watered condition. Correlation analysis of phenological and yield related traits with grain yield revealed that tiller numbers and panicle numbers are highly correlated with grain yield both under well-watered and water stress conditions and contributes maximum towards grain yield. The dendrogram grouped Mahamaya, Sahabhagidhan, Poornima, IBD 1, Hazaridhan, Samleshwari and Danteshwari into one cluster which performed better under water stress conditions and had grain yield more than 1.69 tha−1. Sahabhagidhan, Poornima, Vandana, and N22 displayed tolerance to drought both under vegetative and reproductive conditions which could be a good selection for the breeders to develop drought tolerant rice cultivars for eastern region of India.


1995 ◽  
Vol 9 (3) ◽  
pp. 553-560 ◽  
Author(s):  
Larry J. Newsom ◽  
David R. Shaw

Field experiments conducted in 1992 and 1993 evaluated differential response of 20 soybean cultivars to POST application of AC 263,222 or chlorimuron, as influenced by soil moisture. Natural rainfall was supplemented with overhead sprinkler irrigation to achieve three moisture regimes: excessive (12.5 cm/wk), optimum (5 cm/wk), and low (non-irrigated). Chlorimuron and AC 263,222 injured soybean. Excessive moisture did not increase soybean injury with chlorimuron for any of the cultivars tested compared to optimum moisture; however, 17 of 20 cultivars were injured more by AC 263,222 in combination with excessive moisture than optimum moisture. AC 263,222 reduced the height of five cultivars. Photosynthetic rate of several cultivars was reduced by both AC 263,222 and chlorimuron. Neither herbicide affected the number of nodes per main stem or seed weight; however, pod numbers were reduced for several cultivars with both herbicides. In the low moisture regime, AC 263,222 delayed the maturity of 18 of 20 cultivars with ‘Hutcheson’ maturity delayed 7.1 d. Excessive moisture when combined with AC 263,222 reduced yields for 12 cultivars, compared to five cultivars with chlorimuron. Under optimum moisture conditions, AC 263,222 reduced the yield of 10 cultivars, whereas chlorimuron reduced the yield of 9 cultivars. Low moisture stress only resulted in a yield reduction with 3 cultivars treated with AC 263,222.


1968 ◽  
Vol 48 (3) ◽  
pp. 313-320 ◽  
Author(s):  
C. A. Campbell

Two series of moisture treatments were used to determine if there was a specific growth stage at which low soil moisture stress caused poor seed set in Chinook wheat, and also to determine whether grain yield could be maximized by manipulating time of increasing or decreasing moisture stress.Maintaining soil moisture at 25 to 10% (dry) until the shot-blade stage produced 80% seed set, compared with only 30% seed set when moisture was maintained at 25% to 16% (wet) during the same period. Increasing or decreasing the soil moisture stress at different growth stages had little effect on the number of florets per head or the mean kernel weight. Under the conditions of this experiment, the number of heads and percent seed set were the main components influencing grain yield. The highest grain yields were obtained when plants were grown under dry conditions until late shot-blade and under wet conditions thereafter. Conversely, minimum grain yields were realized where plants were grown under wet conditions until late shot-blade and under dry conditions thereafter. Straw yield was closely related to the total moisture used.


Sign in / Sign up

Export Citation Format

Share Document