scholarly journals MoSe2-GO/rGO Composite Catalyst for Hydrogen Evolution Reaction

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1309 ◽  
Author(s):  
Wenwu Guo ◽  
Quyet Le ◽  
Amirhossein Hasani ◽  
Tae Lee ◽  
Ho Jang ◽  
...  

There has been considerable research to engineer composites of transition metal dichalcogenides with other materials to improve their catalytic performance. In this work, we present a modified solution-processed method for the formation of molybdenum selenide (MoSe2) nanosheets and a facile method of structuring composites with graphene oxide (GO) or reduced graphene oxide (rGO) at different ratios to prevent aggregation of the MoSe2 nanosheets and hence improve their electrocatalytic hydrogen evolution reaction performance. The prepared GO, rGO, and MoSe2 nanosheets were characterized by X-ray powder diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The electrocatalytic performance results showed that the pure MoSe2 nanosheets exhibited a somewhat high Tafel slope of 80 mV/dec, whereas the MoSe2-GO and MoSe2-rGO composites showed lower Tafel slopes of 57 and 67 mV/dec at ratios of 6:4 and 4:6, respectively. We attribute the improved catalytic effects to the better contact and faster carrier transfer between the edge of MoSe2 and the electrode due to the addition of GO or rGO.

NANO ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. 1650107 ◽  
Author(s):  
Ming Ou ◽  
Lin Ma ◽  
Limei Xu ◽  
Zhuomei Yang ◽  
Haizhen Li

Cobalt-doped MoSe2/nitrogenated graphene composite has been successfully synthesized via a facile hydrothermal route and is investigated as an electrocatalyst for hydrogen evolution reaction (HER). The as-prepared samples are well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and Raman spectrum. The results reveal that Co-doped MoSe2 nanosheets which are characteristic of few layers (2–4 layers) and abundant exposed active edge sites are well anchored on the nitrogen-doped graphene sheets to constitute robust composites. When evaluated as catalysts for HER, the obtained composites demonstrate superior electrocatalytic activities toward HER.


2019 ◽  
Vol 10 ◽  
pp. 62-70 ◽  
Author(s):  
Yong Li ◽  
Peng Yang ◽  
Bin Wang ◽  
Zhongqing Liu

Bimetallic phosphides have been attracting increasing attention due to their synergistic effect for improving the hydrogen evolution reaction as compared to monometallic phosphides. In this work, NiCoP modified hybrid electrodes were fabricated by a one-step electrodeposition process with TiO2 nanotube arrays (TNAs) as a carrier. X-ray diffraction, transmission electron microscopy, UV–vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy and scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy were used to characterize the physiochemical properties of the samples. The electrochemical performance was investigated by cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy. We show that after incorporating Co into Ni–P, the resulting Ni x Co y P/TNAs present enhanced electrocatalytic activity due to the improved electron transfer and increased electrochemically active surface area (ECSA). In 0.5 mol L−1 H2SO4 electrolyte, the Ni x Co y P/TNAs (x = 3.84, y = 0.78) demonstrated an ECSA value of 52.1 mF cm−2, which is 3.8 times that of Ni–P/TNAs (13.7 mF cm−2). In a two-electrode system with a Pt sheet as the anode, the Ni x Co y P/TNAs presented a bath voltage of 1.92 V at 100 mA cm−2, which is an improvment of 79% over that of 1.07 V at 10 mA cm−2.


2020 ◽  
Author(s):  
Oluwafunmilola Ola ◽  
Yanqiu Zhu

Abstract In this work, tungsten-based hybrid nanocomposites were grown on interconnected, macroscopic graphitic carbon nitride scaffold after solvothermal treatment followed by sulfidation to attain multifunctional composite electrocatalysts. The physicochemical properties of the obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The tungsten-based composites were tested as electrodes for pseudocapacitors and as electrocatalysts for hydrogen evolution reaction, to take advantage of their porous graphitic carbon nitride features which would be beneficial for optimal ion transport to tungsten-based nanoparticles. These unique physicochemical features endow these composites with excellent electrochemical performances to reach a current density of 10 mA/cm2 for the hydrogen evolution reaction. In addition to demonstrating excellent specific capacitance, these hybrid nanocomposites also possess good stability after 8 hours of testing.


2017 ◽  
Vol 70 (9) ◽  
pp. 1039 ◽  
Author(s):  
Gang Bian ◽  
Pingping Jiang ◽  
Kelei Jiang ◽  
Yirui Shen ◽  
Linggang Kong ◽  
...  

A novel mesoporous MoO2 composite supported on graphene oxide (m-MoO2/GO) has been designed and applied as an efficient epoxidation catalyst. The m-MoO2/GO composite was characterised by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, Brunauer–Emmet–Teller surface area analysis, field emission scanning electron microscopy, and transmission electron microscopy. Compared with pure mesoporous MoO2 (m-MoO2) and amorphous MoO2-graphene oxide (a-MoO2/GO), m-MoO2/GO exhibits the best catalytic activity. The conversion and selectivity for cyclooctene are both over 99 % in 6 h. Remarkably, the mesoporous structure in m-MoO2/GO which derives from SiO2 nanospheres endows the catalyst better catalytic performance for long chain olefins: the conversion of methyl oleate can be as high as 82 %. Such a robust catalyst can be easily recycled and reused five times without significant loss of catalytic activity. This novel catalyst is promising in the synthesis of epoxides with a long carbon chain or large ring size.


RSC Advances ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 5480-5487 ◽  
Author(s):  
Jung Eun Lee ◽  
Jaemin Jung ◽  
Taeg Yeoung Ko ◽  
Sujin Kim ◽  
Seong-Il Kim ◽  
...  

GO content tuning gradually enhanced the HER catalytic performance of the MoS2/rGO hybrids, decreasing the Tafel slope from 82 to 48 mV per decade owing to an increase of catalytically active areas and an electronic transition of MoS2.


2020 ◽  
Vol 20 (7) ◽  
pp. 4035-4046
Author(s):  
Rengasamy Dhanabal ◽  
Dhanasekaran Naveena ◽  
Sivan Velmathi ◽  
Arumugam Chandra Bose

Using a simple solution based synthesis route, hexagonal MoO3 (h-MoO3) nanorods on reduced graphene oxide (RGO) sheets were prepared. The structure and morphology of resulting RGO-MoO3 nanocomposite were characterized using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The optical property was studied using UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) and photoluminescence spectroscopy (PL). The RGO-MoO3 nanocomposites were used as an electrode for supercapacitor application and photocatalyst for photodegradation of methylene blue (MB) and rhodamine B (RhB) under visible light irradiation. We demonstrated that the RGO-MoO3 electrode is capable of delivering high specific capacitance of 134 F/g at current density of 1 A/g with outstanding cyclic stability for 2000 cycles. The RGOMoO3 photocatalyst degrades 95% of MB dye within 90 min, and a considerable recyclability up to 4 cycles was observed. The quenching effect of scavengers test confirms holes are main reactive species in the photocatalytic degradation of MB. Further, the charge transfer process between RGO and MoO3 was schematically demonstrated.


Catalysts ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 589 ◽  
Author(s):  
Mingliang Ma ◽  
Yuying Yang ◽  
Yan Chen ◽  
Fei Wu ◽  
Wenting Li ◽  
...  

In this manuscript, hollow flower-like ferric oxide/manganese dioxide/trimanganese tetraoxide (Fe3O4/MnO2/Mn3O4) magnetically separable microspheres were prepared by combining a simple hydrothermal method and reduction method. As the MnO2 nanoflower working as precursor was partially reduced, Mn3O4 nanoparticles were in situ grown from the MnO2 nanosheet. The composite microspheres were characterized in detail by employing scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), vibration sample magnetometer (VSM) and UV–visible spectrophotometer (UV–vis). Under visible light conditions, the test for degrading rhodamine B (RhB) was used to verify the photocatalytic activity of the photocatalyst. The results showed that the efficiency of the Fe3O4/MnO2/Mn3O4 photocatalyst in visible light for 130 min is 94.5%. The catalytic activity of photocatalyst far exceeded that of the Fe3O4/MnO2 component, and after four cycles, the catalytic performance of the catalyst remained at 78.4%. The superior properties of the photocatalyst came from improved surface area, enhanced light absorption, and efficient charge separation of the MnO2/Mn3O4 heterostructure. This study constructed a green and efficient valence heterostructure composite that created a promising photocatalyst for degrading organic contaminants in aqueous environments.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 948
Author(s):  
Chen Zhao ◽  
Zhi Yu ◽  
Jun Xing ◽  
Yuting Zou ◽  
Huiwen Liu ◽  
...  

The development of efficient electrocatalyst to produce molecular hydrogen from water is receiving considerable attention, in an effort to decrease our reliance on fossil fuels. The prevention of the aggregation of active sites during material synthesis, in order to increase charge transport properties of electrocatalysts, is needed. We have designed, synthesized, and studied a Ag2S/reduced graphene oxide (rGO) electrochemical catalyst (for hydrogen evolution) from water. The Ag2S nanocrystals were synthesized by the solvothermal method in which the rGO was added. The addition of the rGO resulted in the formation of smaller Ag2S nanocrystals, which consequently increased the electrical conductivity of the composite catalyst. The composite catalyst showed a higher electrochemical catalytic activity than the one with an absence of rGO. At a current density of 10 mA/cm2, a low overpotential of 120 mV was obtained. A Tafel slope of 49.1 mV/dec suggests a Volmer–Herovsky mechanism for the composite catalyst. These results may provide a novel strategy for developing hydrogen evolution reaction (HER) electrocatalysts, via the combining of a nano-semiconductor catalyst with a 2D material.


2019 ◽  
Vol 6 (9) ◽  
pp. 191019 ◽  
Author(s):  
Shang Wang ◽  
Zhaolian Han ◽  
Tingting Di ◽  
Rui Li ◽  
Siyuan Liu ◽  
...  

The pod-shaped TiO 2 nano burst tubes (TiO 2 NBTs) were prepared by the combination of electrospinning and impregnation calcination with oxalic acid (H 2 C 2 O 4 ), polystyrene (PS) and tetrabutyl titanate. The silver nanoparticles (AgNPs) were loaded onto the surface of TiO 2 NBTs by ultraviolet light reduction method to prepare pod-shaped Ag@TiO 2 NBTs. In this work, we analysed the effect of the amount of oxalic acid on the cracking degree of TiO 2 NBTs; the effect of the concentration of AgNO 3 solution on the particle size and loading of AgNPs on the surface of TiO 2 NBTs. Scanning electron microscopy and transmission electron microscopy investigated the surface morphology of samples. X-ray diffraction and X-ray photoelectron spectroscopy characterized the structure and composition of samples. Rhodamine B (RhB) solution was used to evaluate the photocatalytic activity of pod-shaped TiO 2 NBTs and Ag@TiO 2 NBTs. The results showed that TiO 2 NBTs degraded 91.0% of RhB under ultraviolet light, Ag@TiO 2 NBTs degraded 95.5% under visible light for 75 and 60 min, respectively. The degradation process of both samples was consistent with the Langmuir–Hinshelwood first-order kinetic equation. Therefore, the catalytic performance of the sample is: Ag@TiO 2 NBTs > TiO 2 NBTs > TiO 2 nanotubes.


2019 ◽  
Vol 79 (9) ◽  
pp. 1675-1684 ◽  
Author(s):  
Guang Xian ◽  
Nan Zhang ◽  
Guangming Zhang ◽  
Yi Zhang ◽  
Zhiguo Zou

Abstract FeNiCeOx was firstly prepared by ultrasonic impregnation method and used to remove diclofenac in a Fenton-like system. The catalytic activity was improved successfully by doping Ni into FeCeOx. The diclofenac removal efficiency reached 97.9% after 30 min reaction. The surface morphology and properties of FeNiCeOx were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Raman and X-ray photoelectron spectroscopy (XPS) analyses. FeNiCeOx in this paper had larger specific surface area than those prepared by other methods, which was attributed to the cavitation effect and hot-spot effect during the ultrasonic synthesis process. Low crystallinity of Fe2O3 and NiO showed by characterization could lead to high interaction of Fe and Ni ions with support of CeO2. They substituted Ce in CeO2, caused lattice contraction and formed more oxygen vacancies, which favoured the catalytic reaction. Meanwhile, Fe and Ce ions both had redox cycles of Fe3+/Fe2+ and Ce4+/Ce3+, which facilitated the electron transfer in the reaction. The synergistic effect among Fe, Ni and Ce might lead to better catalytic performance of FeNiCeOx than any binary metal oxides constituted from the above three elements. Finally, the potential mechanism of diclofenac removal in FeNiCeOx-H2O2 system is proposed.


Sign in / Sign up

Export Citation Format

Share Document