scholarly journals Synthesis of Hollow Flower-Like Fe3O4/MnO2/Mn3O4 Magnetically Separable Microspheres with Valence Heterostructure for Dye Degradation

Catalysts ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 589 ◽  
Author(s):  
Mingliang Ma ◽  
Yuying Yang ◽  
Yan Chen ◽  
Fei Wu ◽  
Wenting Li ◽  
...  

In this manuscript, hollow flower-like ferric oxide/manganese dioxide/trimanganese tetraoxide (Fe3O4/MnO2/Mn3O4) magnetically separable microspheres were prepared by combining a simple hydrothermal method and reduction method. As the MnO2 nanoflower working as precursor was partially reduced, Mn3O4 nanoparticles were in situ grown from the MnO2 nanosheet. The composite microspheres were characterized in detail by employing scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), vibration sample magnetometer (VSM) and UV–visible spectrophotometer (UV–vis). Under visible light conditions, the test for degrading rhodamine B (RhB) was used to verify the photocatalytic activity of the photocatalyst. The results showed that the efficiency of the Fe3O4/MnO2/Mn3O4 photocatalyst in visible light for 130 min is 94.5%. The catalytic activity of photocatalyst far exceeded that of the Fe3O4/MnO2 component, and after four cycles, the catalytic performance of the catalyst remained at 78.4%. The superior properties of the photocatalyst came from improved surface area, enhanced light absorption, and efficient charge separation of the MnO2/Mn3O4 heterostructure. This study constructed a green and efficient valence heterostructure composite that created a promising photocatalyst for degrading organic contaminants in aqueous environments.

2021 ◽  
Author(s):  
Yu Fan ◽  
Yan-ning Yang ◽  
Chen Ding

Abstract The g-C3N4 nanosheet was prepared by calcination method, the MoS2 nanosheet was prepared by hydrothermal method. The g-C3N4/MoS2 composites were prepared by ultrasonic composite in anhydrous ethanol. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-Vis), and photoluminescence (PL) techniques were used to characterize the materials. The photocatalytic degradation of Rhodamine B (Rh B) by g-C3N4/MoS2 composites with different mass ratios was investigated under visible light. The results show that a small amount of MoS2 combined with g-C3N4 can significantly improve photocatalytic activity. The g-C3N4/MoS2 composite with a mass ratio of 1:8 has the highest photocatalytic activity, and the degradation rate of Rh B increases from 50% to 99.6%. The main reason is that MoS2 and g-C3N4 have a matching band structure. The separation rate of photogenerated electron-hole pairs is enhanced. So the g-C3N4/MoS2 composite can improve the photocatalytic activity. The photocatalytic mechanism was proposed through the active matter capture experiment.


NANO ◽  
2014 ◽  
Vol 09 (08) ◽  
pp. 1450090 ◽  
Author(s):  
XIAOLEI SI ◽  
GUANGLIANG CHEN ◽  
ZHILI CHEN ◽  
JUN HUANG ◽  
SHIHUA CHEN ◽  
...  

In this paper, a highly catalytic and nanosized Ag / Co 3 O 4 composite for rhodamine B ( RhB ) degradation was fabricated by using the co-precipitation method at room temperature. The Ag / Co 3 O 4 structure and catalytic properties were characterized through scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) gas-sorption measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-Vis spectroscopy. The results showed that the Co 3 O 4 nanosheets prepared by hydrothermal synthesis mainly exposed (2 2 0) and (1 1 1) facets, which played an important role in determining its catalytic oxidation performance. The Co 3 O 4 nanosheets doped with Ag nanoparticles by a simple silver-mirror reaction exhibited a stable and well-dispersed property in dye solution. Compared to the Ag and Co 3 O 4 nanostructure, the Ag nanoparticles with bigger diameter (10 nm) on Co 3 O 4 surface also readily produced surface-active oxygen species and exhibited a higher catalytic activity for the degradation of RhB solution (5 mg ⋅ L-1) under the visible light. The kinetic constant K of Ag / Co 3 O 4 catalyst for RhB degradation reaction was evaluated to 0.02724 min-1, which is relatively higher than those reported in the literatures.


2019 ◽  
Vol 6 (9) ◽  
pp. 191019 ◽  
Author(s):  
Shang Wang ◽  
Zhaolian Han ◽  
Tingting Di ◽  
Rui Li ◽  
Siyuan Liu ◽  
...  

The pod-shaped TiO 2 nano burst tubes (TiO 2 NBTs) were prepared by the combination of electrospinning and impregnation calcination with oxalic acid (H 2 C 2 O 4 ), polystyrene (PS) and tetrabutyl titanate. The silver nanoparticles (AgNPs) were loaded onto the surface of TiO 2 NBTs by ultraviolet light reduction method to prepare pod-shaped Ag@TiO 2 NBTs. In this work, we analysed the effect of the amount of oxalic acid on the cracking degree of TiO 2 NBTs; the effect of the concentration of AgNO 3 solution on the particle size and loading of AgNPs on the surface of TiO 2 NBTs. Scanning electron microscopy and transmission electron microscopy investigated the surface morphology of samples. X-ray diffraction and X-ray photoelectron spectroscopy characterized the structure and composition of samples. Rhodamine B (RhB) solution was used to evaluate the photocatalytic activity of pod-shaped TiO 2 NBTs and Ag@TiO 2 NBTs. The results showed that TiO 2 NBTs degraded 91.0% of RhB under ultraviolet light, Ag@TiO 2 NBTs degraded 95.5% under visible light for 75 and 60 min, respectively. The degradation process of both samples was consistent with the Langmuir–Hinshelwood first-order kinetic equation. Therefore, the catalytic performance of the sample is: Ag@TiO 2 NBTs > TiO 2 NBTs > TiO 2 nanotubes.


Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 105 ◽  
Author(s):  
Huiting Wang ◽  
Jin Mao ◽  
Zhaowei Zhang ◽  
Qi Zhang ◽  
Liangxiao Zhang ◽  
...  

Deoxynivalenol (DON) is a secondary metabolite produced by Fusarium, which is a trichothecene mycotoxin. As the main mycotoxin with high toxicity, wheat, barley, corn and their products are susceptible to contamination of DON. Due to the stability of this mycotoxin, traditional methods for DON reduction often require a strong oxidant, high temperature and high pressure with more energy consumption. Therefore, exploring green, efficient and environmentally friendly ways to degrade or reduce DON is a meaningful and challenging issue. Herein, a dendritic-like α-Fe2O3 was successfully prepared using a facile hydrothermal synthesis method at 160 °C, which was systematically characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). It was found that dendritic-like α-Fe2O3 showed superior activity for the photocatalytic degradation of DON in aqueous solution under visible light irradiation (λ > 420 nm) and 90.3% DON (initial concentration of 4.0 μg/mL) could be reduced in 2 h. Most of all, the main possible intermediate products were proposed through high performance liquid chromatography-mass spectrometry (HPLC-MS) after the photocatalytic treatment. This work not only provides a green and promising way to mitigate mycotoxin contamination but also may present useful information for future studies.


2019 ◽  
Vol 79 (9) ◽  
pp. 1675-1684 ◽  
Author(s):  
Guang Xian ◽  
Nan Zhang ◽  
Guangming Zhang ◽  
Yi Zhang ◽  
Zhiguo Zou

Abstract FeNiCeOx was firstly prepared by ultrasonic impregnation method and used to remove diclofenac in a Fenton-like system. The catalytic activity was improved successfully by doping Ni into FeCeOx. The diclofenac removal efficiency reached 97.9% after 30 min reaction. The surface morphology and properties of FeNiCeOx were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Raman and X-ray photoelectron spectroscopy (XPS) analyses. FeNiCeOx in this paper had larger specific surface area than those prepared by other methods, which was attributed to the cavitation effect and hot-spot effect during the ultrasonic synthesis process. Low crystallinity of Fe2O3 and NiO showed by characterization could lead to high interaction of Fe and Ni ions with support of CeO2. They substituted Ce in CeO2, caused lattice contraction and formed more oxygen vacancies, which favoured the catalytic reaction. Meanwhile, Fe and Ce ions both had redox cycles of Fe3+/Fe2+ and Ce4+/Ce3+, which facilitated the electron transfer in the reaction. The synergistic effect among Fe, Ni and Ce might lead to better catalytic performance of FeNiCeOx than any binary metal oxides constituted from the above three elements. Finally, the potential mechanism of diclofenac removal in FeNiCeOx-H2O2 system is proposed.


Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 426 ◽  
Author(s):  
Xiaoya Yuan ◽  
Zijuan Feng ◽  
Jianjun Zhao ◽  
Jiawei Niu ◽  
Jiasen Liu ◽  
...  

Bismuth nanoparticles (BiNPs) and Zinc Oxide photocatalysts (BiNPs/ZnO) with different Bi loadings were successfully prepared via a facile chemical method. Their morphology and structure were thoroughly characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-Vis (Ultraviolet-Visible) diffuse reflectance spectroscopy (DRS), photoluminescence spectra (PL), and electrochemical impedance spectroscopy (EIS). The results showed that a modification of hexagonal wurtzite-phase ZnO nanoparticles with Bi is achievable with an intimate interfacial interaction within its composites. The performance of the photocatalytic Cr(VI) removal under visible light irradiation indicated that BiNPs/ZnO exhibited a superior removal performance to bare ZnO, Bi, and the counterpart sample prepared using a physical mixing method. The excellent performance of the BiNPs/ZnO photocatalysts could be ascribed to the synergistic effect between the considerable physical Cr (VI) adsorption and enhanced absorption intensity in the visible light region, due to the surface plasmon resonance (SPR) as well as the effective transfer and separation of the photogenerated charge carriers at the interface.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1309 ◽  
Author(s):  
Wenwu Guo ◽  
Quyet Le ◽  
Amirhossein Hasani ◽  
Tae Lee ◽  
Ho Jang ◽  
...  

There has been considerable research to engineer composites of transition metal dichalcogenides with other materials to improve their catalytic performance. In this work, we present a modified solution-processed method for the formation of molybdenum selenide (MoSe2) nanosheets and a facile method of structuring composites with graphene oxide (GO) or reduced graphene oxide (rGO) at different ratios to prevent aggregation of the MoSe2 nanosheets and hence improve their electrocatalytic hydrogen evolution reaction performance. The prepared GO, rGO, and MoSe2 nanosheets were characterized by X-ray powder diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The electrocatalytic performance results showed that the pure MoSe2 nanosheets exhibited a somewhat high Tafel slope of 80 mV/dec, whereas the MoSe2-GO and MoSe2-rGO composites showed lower Tafel slopes of 57 and 67 mV/dec at ratios of 6:4 and 4:6, respectively. We attribute the improved catalytic effects to the better contact and faster carrier transfer between the edge of MoSe2 and the electrode due to the addition of GO or rGO.


2010 ◽  
Vol 25 (1) ◽  
pp. 182-188 ◽  
Author(s):  
Xiaoxia Yan ◽  
Gang Liu ◽  
Lianzhou Wang ◽  
Yong Wang ◽  
Xianfang Zhu ◽  
...  

Aimed at designing an efficient visible light active photocatalyst and suppressing the self-corrosion tendency of CdS nanoparticles, a novel composite consisting of CdS nanoparticles and exfoliated two-dimensional (2D) TiO2 nanosheets was successfully fabricated using a simple self-assembly process. The prepared samples were characterized using various techniques including x-ray diffraction, ultraviolet–visible absorption spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. It was found that the exfoliated 2D nanosheets played an important role as an ultrathin coating to suppress the photocorrosion of CdS nanoparticles, evidenced by inductively coupled plasma-atomic emission spectrometer analysis. The resultant CdS/TiO2 composites exhibited enhanced photocatalytic activity in the oxidation of Rhodamine B in water under visible light irradiation (λ > 420 nm).


2021 ◽  
Author(s):  
Janani B ◽  
Asad Syed ◽  
Abdallah M. Elgorban ◽  
Ali H. Bahkali ◽  
S. Sudheer Khan

Abstract Pristine Al2O3 and CdO are known to possess poor photocatalytic activity individually. The formation of CdO/Al2O3 heterojunction was investigated for the enhancement of photocatalytic performance. High resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) has been used to determine the crystalline feature and elemental composition of the NCs respectively. Peaks ascribed to Cd-O and O-Al-O was noted in fourier-transform infrared spectroscopy (FTIR) analysis. The NCs exhibits a high surface area (27.23 m2/g) to their contributing particles which was analysed using BET analyser. The band gap energy of CdO/Al2O3NCs was observed to be 2.95 eV which shows a considerable energy shift from its individual particles, CdO (2.73 eV) and Al2O3 (3.94 eV). The results displayed that the degradation efficiency of the CdO-Al2O3 NCs was enhanced 14 times than pristine Al2O3 and 3.5 times than pristine CdO. The MB dye has showed the half life period of 80 min. TOC analysis of degraded product supported high mineralization of the pollutants. The dye degradation was driven by OH. radicals and the CdO-Al2O3 nanocomposite possessed high reusability which was confirmed by six cycle test. Growth inhibition of E. coli, P. aeruginosa and B. subtilis was attained by exposure to CdO/Al2O3 NCs. The CdO-Al2O3 NCs can be a viable solution for degradation of organic contaminants effectively under natural sun light as well as an efficient antibacterial agent.


2021 ◽  
Author(s):  
Anukorn Phuruangrat ◽  
Jarupat Teppetcharat ◽  
Panudda Patiphatpanya ◽  
Phattranit Dumrongrojthanath ◽  
Somchai Thongtem ◽  
...  

Abstract Heterostructure Pd/Bi2WO6 nanocomposites were successful synthesized in ethylene glycol by microwave-assisted deposition method at 300 W for 10 min. Effect of the loaded Pd on phase, composition, morphology and visible-light-driven photocatalytic properties of Bi2WO6 was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fast-Fourier-Transform (FFT) diffraction, UV-visible absorption and X-ray photoelectron spectroscopy (XPS). In this research, good distribution of cubic phase of spherical Pd nanoparticles with particle size of 15–20 nm supported on orthorhombic Bi2WO6 thin nanoplates. The 10% Pd/Bi2WO6 nanocomposites reveal major metallic Pd0 species containing in Bi2WO6 sample. Microwave can be used to synthesize metallic Pd nanoparticles supporting on top of Bi2WO6 nanoplates. Photocatalytic activities of Bi2WO6 loaded with different weight contents of Pd were monitored through photodegradation of cationic rhodamine B (RhB) dye under visible light irradiation of a xenon lamp. The 10% Pd/Bi2WO6 nanocomposites have the highest photocatalytic activity because Pd nanoparticles as electron acceptors promote interfacial charge-transfer through Pd/Bi2WO6 heterojunction.


Sign in / Sign up

Export Citation Format

Share Document