scholarly journals Fabrication and Application of Dual-Modality Polymer Nanoparticles Based on an Aggregation-Induced Emission-Active Fluorescent Molecule and Magnetic Fe3O4

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 220 ◽  
Author(s):  
Lingyun Wang ◽  
Meiying Huang ◽  
Hao Tang ◽  
Derong Cao ◽  
Yu Zhao

Fluorescent magnetic nanoparticles (NPs) utilized for imaging hold great promise for biomedical applications, but it remains a challenging task. Here, we report novel dual-modality NPs using an aggregation-induced emission (AIE)-active and near-infrared (NIR) emissive dye (TPAS) and magnetic Fe3O4 as the core, and biocompatible polymer Pluronic F-127 as the encapsulation matrix by self-assembly procedures. The obtained fluorescent-magnetic AIE NPs have both high fluorescence quantum yield (13.8%) at 700 nm and high magnetic saturation value. With good photostability and biocompatibility, the resulting NPs show effective MRI ability, but also a stain in cytoplasm with a strong NIR fluorescent signal.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 166 ◽  
Author(s):  
Lucia Lombardi ◽  
Annarita Falanga ◽  
Valentina Del Genio ◽  
Stefania Galdiero

Peptide drugs hold great promise for the treatment of infectious diseases thanks to their novel mechanisms of action, low toxicity, high specificity, and ease of synthesis and modification. Naturally developing self-assembly in nature has inspired remarkable interest in self-assembly of peptides to functional nanomaterials. As a matter of fact, their structural, mechanical, and functional advantages, plus their high bio-compatibility and bio-degradability make them excellent candidates for facilitating biomedical applications. This review focuses on the self-assembly of peptides for the fabrication of antibacterial nanomaterials holding great interest for substituting antibiotics, with emphasis on strategies to achieve nano-architectures of self-assembly. The antibacterial activities achieved by these nanomaterials are also described.


2020 ◽  
Vol 56 (47) ◽  
pp. 6384-6387
Author(s):  
Vlad A. Neacşu ◽  
Cecilia Cerretani ◽  
Mikkel B. Liisberg ◽  
Steven M. Swasey ◽  
Elisabeth G. Gwinn ◽  
...  

Silver nanoclusters stabilized by 5′-CCCGGAGAAG-3′ DNA strands display an unusually high fluorescence quantum yield in the near-infrared region.


CCS Chemistry ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 173-180 ◽  
Author(s):  
Luyang Zhao ◽  
Shukun Li ◽  
Yamei Liu ◽  
Ruirui Xing ◽  
Xuehai Yan

Supramolecular assembly could in principle lead to redshifted absorption through J-aggregation of chromophores, which would be a highly promising method for achieving near-infrared materials with improved functionality and flexibility. To effectively enhance the material functionalities, one of the great challenges remaining is to achieve an aggregation state with a redshift larger than 100 nm. Conventional assemblies that are mostly thermodynamically controlled have a limited redshifted absorption of less than 30 nm. In this work, using a model phthalocyanine–peptide conjugate compound, we achieved the first fabrication of phthalocyanine-based near-infrared materials with a superlarge absorption redshift of 105 nm by a kinetically controlled self-assembly strategy. In this kinetically controlled self-assembly process, sufficient rearrangement of intermolecular aggregates to an ordered structure is revealed to be crucial to facilitate the formation of nanofibrils instead of nanoparticles, which are formed via a general rapid self-assembly pathway under thermodynamic control. The superlarge redshift in the absorbance of assembled nanofibrils originates from the orderly stacked phthalocyanine chromophores, which enable a charge transfer state through more effective intermolecular orbital overlapping. The kinetically controlled J-aggregation state of the phthalocyanine–peptide conjugate with superlarge redshifted absorption not only opens an unprecedented route toward novel near-infrared phthalocyanine materials but also holds great promise for revealing general design principles for various organic dye materials.


2019 ◽  
Vol 20 (23) ◽  
pp. 6067 ◽  
Author(s):  
Olesya V. Stepanenko ◽  
Olga V. Stepanenko ◽  
Olesya G. Shpironok ◽  
Alexander V. Fonin ◽  
Irina M. Kuznetsova ◽  
...  

Biomarkers engineered on the basis of bacterial phytochromes with biliverdin IXα (BV) cofactor as a chromophore are increasingly used in cell biology and biomedicine, since their absorption and fluorescence spectra lie within the so-called optical “transparency window” of biological tissues. However, the quantum yield of BV fluorescence in these biomarkers does not exceed 0.145. The task of generating biomarkers with a higher fluorescence quantum yield remains relevant. To address the problem, we proposed the use of phycocyanobilin (PCB) as a chromophore of biomarkers derived from bacterial phytochromes. In this work, we characterized the complexes of iRFP713 evolved from RpBphP2 and its mutant variants with different location of cysteine residues capable of covalent tetrapyrrole attachment with the PCB cofactor. All analyzed proteins assembled with PCB were shown to have a higher fluorescence quantum yield than the proteins assembled with BV. The iRFP713/V256C and iRFP713/C15S/V256C assembled with PCB have a particularly high quantum yield of 0.5 and 0.45, which exceeds the quantum yield of all currently available near-infrared biomarkers. Moreover, PCB has 4 times greater affinity for iRFP713/V256C and iRFP713/C15S/V256C proteins compared to BV. These data establish iRFP713/V256C and iRFP713/C15S/V256C assembled with the PCB chromophore as promising biomarkers for application in vivo. The analysis of the spectral properties of the tested biomarkers allowed for suggesting that the high-fluorescence quantum yield of the PCB chromophore can be attributed to the lower mobility of the D-ring of PCB compared to BV.


2020 ◽  
Author(s):  
Arno van der Weijden ◽  
Mitch Winkens ◽  
Sandra M. C. Schoenmakers ◽  
Wilhelm T.S. Huck ◽  
Peter A. Korevaar

<p>Out-of-equilibrium molecular systems hold great promise as dynamic, reconfigurable matter that executes complex tasks autonomously. However, translating molecular scale dynamics into spatiotemporally controlled phenomena at mesoscopic length scales remains a challenge. In living cells, reliable positioning processes such as the centering of the centrosome involve forces that result from dissipative self-assembly. We demonstrate how spatiotemporal positioning emerges in synthetic systems where self-assembly is coupled to molecular fluxes originating from concentration gradients. At the core of our system are millimeter long self-assembled filaments and Marangoni flows induced by non-uniform amphiphile distributions. We demonstrate how repulsive and attractive forces that are generated as filaments organize between source and drain droplets sustain autonomous positioning of dynamic assemblies at the mesoscale. Our concepts provide a new paradigm for the development of non-equilibrium matter with spatiotemporal programmability. </p>


2020 ◽  
Author(s):  
Arno van der Weijden ◽  
Mitch Winkens ◽  
Sandra M. C. Schoenmakers ◽  
Wilhelm T.S. Huck ◽  
Peter A. Korevaar

<p>Out-of-equilibrium molecular systems hold great promise as dynamic, reconfigurable matter that executes complex tasks autonomously. However, translating molecular scale dynamics into spatiotemporally controlled phenomena at mesoscopic length scales remains a challenge. In living cells, reliable positioning processes such as the centering of the centrosome involve forces that result from dissipative self-assembly. We demonstrate how spatiotemporal positioning emerges in synthetic systems where self-assembly is coupled to molecular fluxes originating from concentration gradients. At the core of our system are millimeter long self-assembled filaments and Marangoni flows induced by non-uniform amphiphile distributions. We demonstrate how repulsive and attractive forces that are generated as filaments organize between source and drain droplets sustain autonomous positioning of dynamic assemblies at the mesoscale. Our concepts provide a new paradigm for the development of non-equilibrium matter with spatiotemporal programmability. </p>


RSC Advances ◽  
2015 ◽  
Vol 5 (7) ◽  
pp. 5269-5276 ◽  
Author(s):  
Qingjian Xing ◽  
Najun Li ◽  
Yang Jiao ◽  
Dongyun Chen ◽  
Jiaying Xu ◽  
...  

The core–shell nanocarrier, based on spiropyran-containing copolymer coated upconversion nanocomposites, was successfully prepared via a facile self-assembly process for NIR-triggered drug release and cancer therapy.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3298
Author(s):  
Na Li ◽  
Liyan Liu ◽  
Huiqing Luo ◽  
Huaqiao Wang ◽  
Depo Yang ◽  
...  

Fluorophores with aggregation-induced emission enhancement (AIEE) characteristics applied in bioimaging have attracted more and more attention in recent years. In this work, a series of flavanone compounds with AIEE characteristics was developed and applied to fluorescence imaging of mitochondria and zebrafish. The compounds were readily prepared by the thermal dehydration of chalcone that was obtained by the reaction of o-hydroxyacetophenone and benzaldehyde. Two of these compounds showed significant AIEE characteristics by fluorescence performance experiments, including optical spectra, fluorescence spectra, fluorescence quantum yield (φF), fluorescence lifetime, and scanning electron microscopy (SEM). Compared with traditional organic fluorescent dyes, these compounds have high fluorescence emission and high fluorescence quantum yield in solid or aggregated state, which overcomes the shortcoming of aggregation-caused quenching (ACQ). More importantly, the two compounds exhibited low cytotoxicity and good cytocompatibility in A549 lung cells at the experimental concentration range and they specifically targeted mitochondria, which make it of great potential use in mitochondria labeling. In addition, they were embryonic membrane permeable and had different affinities for different tissues and organs of zebrafish, but mainly distributed in the digestive system, providing a basis for the application of such compounds in bioimaging. These AIEE compounds with superior properties could be of great potential use in mitochondria imaging and other in vivo studies.


2020 ◽  
Vol 27 (33) ◽  
pp. 5510-5529
Author(s):  
Zengtao Wang ◽  
Qingqing Meng ◽  
Shaoshun Li

Background: Multidrug Resistance (MDR) is defined as a cross-resistance of cancer cells to various chemotherapeutics and has been demonstrated to correlate with drug efflux pumps. Visualization of drug efflux pumps is useful to pre-select patients who may be insensitive to chemotherapy, thus preventing patients from unnecessary treatment. Near-Infrared (NIR) imaging is an attractive approach to monitoring MDR due to its low tissue autofluorescence and deep tissue penetration. Molecular NIR imaging of MDR cancers requires stable probes targeting biomarkers with high specificity and affinity. Objective: This article aims to provide a concise review of novel NIR probes and their applications in MDR cancer treatment. Results: Recently, extensive research has been performed to develop novel NIR probes and several strategies display great promise. These strategies include chemical conjugation between NIR dyes and ligands targeting MDR-associated biomarkers, native NIR dyes with inherent targeting ability, activatable NIR probes as well as NIR dyes loaded nanoparticles. Moreover, NIR probes have been widely employed for photothermal and photodynamic therapy in cancer treatment, which combine with other modalities to overcome MDR. With the rapid advancing of nanotechnology, various nanoparticles are incorporated with NIR dyes to provide multifunctional platforms for controlled drug delivery and combined therapy to combat MDR. The construction of these probes for MDR cancers targeted NIR imaging and phototherapy will be discussed. Multimodal nanoscale platform which integrates MDR monitoring and combined therapy will also be encompassed. Conclusion: We believe these NIR probes project a promising approach for diagnosis and therapy of MDR cancers, thus holding great potential to reach clinical settings in cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document