scholarly journals Preparation and Properties of Toluene-Diisocyanate-Trimer-Modified Epoxy Resin

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 416 ◽  
Author(s):  
Xiongfei Zhang ◽  
Lu Qiao ◽  
Xiaolian Lu ◽  
Linqi Jiang ◽  
Ting Cao

In this paper, a novel modified epoxy resin with an interpenetrating network structure for use as a grouting material with high toughness was prepared by a method of graft copolymerization between polyurethane prepolymer (PUP) trimer and epoxy resin (E-44). Polyurethane prepolymer was synthesized using poly(propylene glycol) (PPG) and 2,4-toluene diisocyanate trimer (TDIT) at 70 °C for 3 h. The graft copolymer was prepared by grafting polyurethane prepolymer onto the side chain of epoxy resin at 110 °C. The mechanical properties, fracture surface morphology, chemical structure, thermal properties, and corrosion resistance of the modified epoxy resin curing products were studied. Due to the beneficial flexible segments and the interpenetrating network structure, the results show that when the ratio of epoxy resin to polyurethane prepolymer is 10:2, the optimum mechanical properties are obtained; these include a compressive resistance of 184.8 MPa, impact property of 76.6 kJ/m2, and elongation at break of 31.5%. At the same time, the modified epoxy resin curing product also has excellent heat and corrosion resistance. This work provides a new method for the study of epoxy resins with high performance.


2014 ◽  
Vol 910 ◽  
pp. 70-73
Author(s):  
Tao Wang ◽  
Jun Wang ◽  
Bin Zhang

P(BA-St), a good modifier for epoxy resin, was prepared by BA and St in situ polymerization. The modified resin system was based on diglycidyl ether of bisphenol and methyl tetrahydrophthalic anhydride, tris (dimethylaminomethyl) phenol. The influence of the copolymer on mechanical properties and thermal performance of the systems was studied. When 15 wt% of the BA/St with a weight ratio composition of 7.5/7.5 was added to epoxy, high performance modified epoxy resin was obtained.



e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 489-498
Author(s):  
Xiongfei Zhang ◽  
Xiaolian Lu ◽  
Lu Qiao ◽  
Linqi Jiang ◽  
Ting Cao ◽  
...  

AbstractIn order to improve the toughness of epoxy resin for grouting material, the flexible hexamethylene diisocyanate (HDI) was utilized to manufacture a new kind of epoxy resin with high toughness via co-polymerization method. In the procedure of preparing bisphenol A epoxy resin, before the reaction between bisphenol A (BPA) and epichlorohydrin (ECH), HDI was introduced to react with BPA for embedding flexible segments into the chain of epoxy resin, then modified epoxy resin (HDI/EP) was manufactured. The mechanical properties, especially the toughness of the HDI/EP, are significantly increased – the fracture elongation is up to 124%. In addition, the compressed specimens can fully recover to their original shape in a few minutes. Thermal performance and corrosion resistance of the HDI/EP specimen were also investigated, which showed that the specimen can be used under 258°C, and can remain stable in H2SO4, NaOH and NaCl solutions with 10 wt% for 100 h, respectively. The present work provides a convenient avenue pathway to prepare an epoxy resin with high toughness, which may be used in many technologies.



Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.



Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 89
Author(s):  
Wei Yuan ◽  
Qian Hu ◽  
Jiao Zhang ◽  
Feng Huang ◽  
Jing Liu

This study modified graphene oxide (GO) with hydrophilic octadecylamine (ODA) via covalent bonding to improve its dispersion in silicone-modified epoxy resin (SMER) coatings. The structural and physical properties of ODA-GO were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle tests. The ODA-GO composite materials were added to SMER coatings by physical mixing. FE-SEM, water absorption, and contact angle tests were used to evaluate the physical properties of the ODA-GO/SMER coatings, while salt spray, electrochemical impedance spectroscopy (EIS), and scanning Kelvin probe (SKP) methods were used to test the anticorrosive performance of ODA-GO/SMER composite coatings on Q235 steel substrates. It was found that ODA was successfully grafted onto the surfaces of GO. The resulting ODA-GO material exhibited good hydrophobicity and dispersion in SMER coatings. The anticorrosive properties of the ODA-GO/SMER coatings were significantly improved due to the increased interfacial adhesion between the nanosheets and SMER, lengthening of the corrosive solution diffusion path, and increased cathodic peeling resistance. The 1 wt.% ODA-GO/SMER coating provided the best corrosion resistance than SMER coatings with other amounts of ODA-GO (including no addition). After immersion in 3.5 wt.% NaCl solution for 28 days, the low-frequency end impedance value of the 1 wt.% ODA-GO/SMER coating remained high, at 6.2 × 108 Ω·cm2.



2014 ◽  
Vol 775-776 ◽  
pp. 588-592
Author(s):  
Camila Rodrigues Amaral ◽  
Ruben Jesus Sanchez Rodriguez ◽  
Magno Luiz Tavares Bessa ◽  
Verônica Scarpini Cândido ◽  
Sergio Neves Monteiro

The correlation between the structural network of a diglycidyl ether of the bisphenol-A (DGEBA) epoxy resin, modified by two distinct aliphatic amines (tetraethylenepentamine TEPA and jeffamine D230), and its mechanical properties, was investigated as possible matrix for abrasive composites applications. Both flexural tests, to determine the yield stress and the elastic modulus, as well as impact tests to determine the notch toughness, were performed. The DGEBA/D230 presented the highest stiffness and toughness but lowest yield stress. This epoxy network also displayed a greater plastic deformation during fracture.



Author(s):  
Chen-Chi M. Ma ◽  
Ming-Shiu Li ◽  
Yio-Don Wu ◽  
Yi-Feng Su


2013 ◽  
Vol 401-403 ◽  
pp. 713-716
Author(s):  
Cheng Fang ◽  
Dong Bo Guan ◽  
Wei Guo Yao ◽  
Shou Jun Wang ◽  
Hui An

The epoxy resin was modified with the mixture of α,ω-dihydroxy poly-(3,3,3-trifluoropropyl) siloxane (PTFPMS), KH560 and stannous octoate. KH560 can react with PTFPMS and also epoxy resin curing agent. The two reactions were characterized by FI-IR. The modified epoxy resin was characterized by FI-IR. The result showed that fluorine-containing silicone had been successfully introduced into the epoxy system. The mechanical and thermal properties of the modified epoxy resin were analyzed. The results showed that with the increase of PTFPMS the impact strength of epoxy resin increased, hardness and bending strength correspondingly reduced, slight decrease in the glass transition temperature.



2019 ◽  
Vol 162 ◽  
pp. 685-691 ◽  
Author(s):  
Albina Surnova ◽  
Dinar Balkaev ◽  
Delus Musin ◽  
Rustem Amirov ◽  
Ayrat M. Dimiev


2012 ◽  
Vol 531 ◽  
pp. 511-515
Author(s):  
Zhi Gang Liu ◽  
Jing Jing Xu ◽  
Yan Lan Qin ◽  
Ju Sheng Zhang ◽  
Qian Lan Rao

Study on isocyanate-terminated prepolymer prepared by the reaction of toluene diisocyanate (TDI) with the hydroxy of epoxy resin. By the characteristics that isocyanate-group reacts with active hydrogen groups easily, the prepolymer could be as a curing agent for substance with active hydrogen groups like coal tar. IR spectra showed that the modification was achieved by cross-linking the hydroxy of epoxy resin and the isocyanate of TDI, but epoxy group had no change. In self-made coal tar coatings, the remaining isocyanate-groups played a curing agent role linking coal tar and epoxy resin. Tafel test showed the films with prepolymer was more corrosion resistance, combined the characteristics of the epoxy resin and coal tar.



Sign in / Sign up

Export Citation Format

Share Document