scholarly journals Polyaniline Nanotubes/Carbon Cloth Composite Electrode by Thermal Acid Doping for High-Performance Supercapacitors

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2053 ◽  
Author(s):  
Jia Hui ◽  
Daoxin Wei ◽  
Jing Chen ◽  
Zhou Yang

Carbon materials have been widely used in designing supercapacitors (SCs) but the capacitance is not ideal. Herein, we synthesize polyaniline (PANI) nanotubes on the basis of a carbon cloth (CC) through a one-step self-degradation template method, and fabricate a CC@PANI NTs-H (CC@PANI nanotubes doping at high temperature) composite electrode by thermal acid doping. The CC@PANI NTs-H electrode obviously exhibits better electrochemical performance with a gravimetric capacitance of 438 F g−1 and maintains 86.8% after 10,000 cycles than the CC@PANI NTs-R (CC@PANI nanotubes doping at room temperature) electrode. Furthermore, we assemble a flexible solid state supercapacitor (FSSC) device with the as-prepared CC@PANI NTs-H composite electrodes, showing good flexibility and outstanding electrochemical performances with a high gravimetric capacitance of 247 F g−1, a large energy density of 21.9 Wh kg−1, and a capacitance retention of 85.4% after 10,000 charge and discharge cycles. Our work proposes a novel and easy pathway to fabricate low-cost FSSCs for the development of energy storage devices.

2017 ◽  
Vol 5 (28) ◽  
pp. 14838-14846 ◽  
Author(s):  
Wenda Qiu ◽  
Yu Li ◽  
Ao You ◽  
Zemin Zhang ◽  
Guangfu Li ◽  
...  

Aqueous Zn–MnO2 batteries have great potential as flexible energy storage devices owing to their low cost, high energy density, safety, and environmental friendliness.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 270
Author(s):  
Syed Shaheen Shah ◽  
Himadri Tanaya Das ◽  
Hasi Rani Barai ◽  
Md. Abdul Aziz

Energy generation can be clean and sustainable if it is dependent on renewable resources and it can be prominently utilized if stored efficiently. Recently, biomass-derived carbon and polymers have been focused on developing less hazardous eco-friendly electrodes for energy storage devices. We have focused on boosting the supercapacitor’s energy storage ability by engineering efficient electrodes in this context. The well-known conductive polymer, polyaniline (PANI), deposited on nickel foam (NF) is used as a positive electrode, while the activated carbon derived from jute sticks (JAC) deposited on NF is used as a negative electrode. The asymmetric supercapacitor (ASC) is fabricated for the electrochemical studies and found that the device has exhibited an energy density of 24 µWh/cm2 at a power density of 3571 µW/cm2. Furthermore, the ASC PANI/NF//KOH//JAC/NF has exhibited good stability with ~86% capacitance retention even after 1000 cycles. Thus, the enhanced electrochemical performances of ASC are congregated by depositing PANI on NF that boosts the electrode’s conductivity. Such deposition patterns are assured by faster ions diffusion, higher surface area, and ample electroactive sites for better electrolyte interaction. Besides advancing technology, such work also encourages sustainability.


2014 ◽  
Vol 07 (01) ◽  
pp. 1430001 ◽  
Author(s):  
Kunfeng Chen ◽  
Dongfeng Xue

Cu -based materials, including metal Cu and semiconductors of Cu 2 O and CuO , are promising and important candidates toward practical electrochemical energy storage devices due to their abundant, low cost, easy synthesis and environmentally friendly merits. This review presents an overview of the applications of Cu -based materials in the state-of-art electrochemical energy storage, including both lithium-ion batteries and supercapacitors. The synthesis chemistry, structures and the corresponding electrochemical performances of these materials are summarized and compared. During chemical synthesis and electroactive performance measurement of Cu -based materials, we found that Cu – Cu 2 O – CuO sequence governs all related transformations. Novel water-soluble CuCl 2 supercapacitors with ultrahigh capacitance were also reviewed which can advance the understanding of intrinsic mechanism of inorganic pseudocapacitors. The major goal of this review is to highlight some recent progresses in using Cu -based materials for electrochemical energy storage.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuaki Kisu ◽  
Sangryun Kim ◽  
Takara Shinohara ◽  
Kun Zhao ◽  
Andreas Züttel ◽  
...  

AbstractHigh-energy-density and low-cost calcium (Ca) batteries have been proposed as ‘beyond-Li-ion’ electrochemical energy storage devices. However, they have seen limited progress due to challenges associated with developing electrolytes showing reductive/oxidative stabilities and high ionic conductivities. This paper describes a calcium monocarborane cluster salt in a mixed solvent as a Ca-battery electrolyte with high anodic stability (up to 4 V vs. Ca2+/Ca), high ionic conductivity (4 mS cm−1), and high Coulombic efficiency for Ca plating/stripping at room temperature. The developed electrolyte is a promising candidate for use in room-temperature rechargeable Ca batteries.


2018 ◽  
Vol 824 ◽  
pp. 226-237 ◽  
Author(s):  
Neha Kanaujiya ◽  
Nagesh Kumar ◽  
A.K. Srivastava ◽  
Yogesh Sharma ◽  
G.D. Varma

2017 ◽  
Vol 10 (5) ◽  
pp. 1075-1101 ◽  
Author(s):  
Haiying Che ◽  
Suli Chen ◽  
Yingying Xie ◽  
Hong Wang ◽  
Khalil Amine ◽  
...  

Electrolyte design or functional development is very effective at promoting the performance of sodium-ion batteries, which are attractive for electrochemical energy storage devices due to abundant sodium resources and low cost. The roadmap of the sodium ion batteries based on electrolyte materials was drawn firstly and shows that the electrolyte type decides the electrochemical window and energy density.


2014 ◽  
Vol 1035 ◽  
pp. 385-391
Author(s):  
Pei Yu Wang ◽  
Guo Heng Zhang ◽  
Hai Yan Jiao ◽  
Xiao Ping Zheng

In this paper, Pine needles (PNs) were used to synthesize porous activated carbon by the carbonization and activation processes. The material for PNs were carbonized at 600 °C and activated at 800 °C(denoted as AC-800) show typical amorphous character, and display porous structures with high specific surface areas 2729 m2/g via XRD and BET measurements. As the electro-active material, AC-800 electrode exhibit ideal capacitive behaviors in aqueous electrolytes, and the maximal specific capacitance is as high as 286 F/g at the current density of 1 A/g. Furthermore, AC-800 electrode shows excellent electrochemical cycle stability with ~94 % initial capacitance being retained after 2000 cycles. The desirable capacitive performances enable the PNs to act as a new biomass source of carbonaceous materials for high performance supercapacitors and low-cost electrical energy storage devices.


In this study, graphene-molybdenum oxide composite materials were prepared via green hydrothermal synthesis method and evaluated as supercapacitor electrodes. The morphology and structure of the composite were examined by using Scanning Electron Microscopy (SEM), Raman spectroscopy. The electrochemical performances of the composite were evaluated by cyclic voltammetry (CV), galvanostatic chargedischarge (CD) method, and electrochemical impedance spectroscopy (EIS). The electrochemical results show that the composite electrodes possess improved specific capacitance of 122 F/g at a scan rate of 5 mV/s, which is about 22% higher that of pure graphene. Additionally, the composite electrodes exhibit good capacitive properties and a high specific energy with superior capacitive retention after 1000 cycles. In contrast to the previously reported systems that are usually complicated and costly, the present work potentially provides a readily scalable technological platform for economic mass production of energy storage devices.


2013 ◽  
Vol 1 (24) ◽  
pp. 7167 ◽  
Author(s):  
Lina Gao ◽  
Xianfu Wang ◽  
Zhong Xie ◽  
Weifeng Song ◽  
Lijing Wang ◽  
...  

2014 ◽  
Vol 627 ◽  
pp. 3-6 ◽  
Author(s):  
M.Y. Ho ◽  
Poi Sim Khiew ◽  
D. Isa ◽  
T.K. Tan ◽  
W.S. Chiu ◽  
...  

In this study, a symmetric electrochemical capacitor has been fabricated by adopting the lithiated compound (LiFePO4)-activated carbon (AC) composite as the core electrode materials. The electrochemical performances of the prepared supercapacitor were studied using cyclic voltammetry (CV) in 1.0 M Na2SO3 solution. Experimental results reveal that the maximum specific capacitance of 112.41 F/g is obtained in 40 wt % LiFePO4 loading on AC electrode in comparison to that of pure AC electrode (76.24 F/g) in 1 M Na2SO3. The enhanced capacitive performance of the 40 wt % LiFeO4 –AC composite electrode is believed attributed to the contribution of synergistic effect of electric double layer capacitance (EDLC) on the surface of AC as well as pseudocapacitance via intercalation/extraction of Na+, SO32-and Li+ ions in LiFePO4 lattices. The composite electrodes can sustain a stable capacitive performance at least 1000 cycles with only ~5 % specific capacitance loss after 1000 cycles. Based on the findings above, 40 wt % LiFeO4 –AC composite electrodes which utilise low cost materials and environmental friendly electrolyte is worth being investigated in more details.


Sign in / Sign up

Export Citation Format

Share Document