scholarly journals Fluorene-Based Donor-Acceptor Copolymers Containing Functionalized Benzotriazole Units: Tunable Emission and their Electrical Properties

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 256 ◽  
Author(s):  
Iván Torres-Moya ◽  
Rebeca Vázquez-Guilló ◽  
Sara Fernández-Palacios ◽  
José Ramón Carrillo ◽  
Ángel Díaz-Ortiz ◽  
...  

Monomers 4,7-dibromo-2H-benzo[d]1,2,3-triazole (m1) and 4,7-(bis(4-bromophenyl)ethynyl)-2H-benzo[d]1,2,3-triazole (m2) have been synthesized in good yields using different procedures. Monomers m1 and m2 have been employed for building new copolymers of fluorene derivatives by a Suzuki reaction under microwave irradiation using the same conditions. In each case different chain lengths have been achieved, while m1 gives rise to polymers for m2 oligomers have been obtained (with a number of monomer units lower than 7). Special interest has been paid to their photophysical properties due to excited state properties of these D-A units alternates, which have been investigated by density functional theory (DFT) calculations using two methods: (i) An oligomer approach and (ii) by periodic boundary conditions (PBC). It is highly remarkable the tunability of the photophysical properties as a function of the different monomer functionalization derived from 2H-benzo[d]1,2,3-triazole units. In fact, a strong modulation of the absorption and emission properties have been found by functionalizing the nitrogen N-2 of the benzotriazole units or by elongation of the π-conjugated core with the introduction of alkynylphenyl groups. Furthermore, the charge transport properties of these newly synthesized macromolecules have been approached by their implementation in organic field-effect transistors (OFETs) in order to assess their potential as active materials in organic optoelectronics.

2017 ◽  
Vol 70 (9) ◽  
pp. 1048
Author(s):  
Yu-Lu Pan ◽  
Zhi-Bin Cai ◽  
Li Bai ◽  
Sheng-Li Li ◽  
Yu-Peng Tian

A series of all-trans acceptor–π-donor (acceptor) compounds (BAQ, SFQ, BLQ, and XJQ) were conveniently synthesised and characterised by infrared, nuclear magnetic resonance, mass spectrometry, and elemental analysis. Their photophysical properties, including linear absorption, one-photon excited fluorescence, two-photon absorption, and two-photon excited fluorescence, were systematically investigated. All the compounds show obvious solvatochromic effects, such as significant bathochromic shifts of the emission spectra and larger Stokes shifts in more polar solvents. Under excitation from a femtosecond Ti : sapphire laser with a pulse width of 140 fs, they all exhibit strong two-photon excited fluorescence, and the two-photon absorption cross-sections in THF are 851 (BAQ), 216 (SFQ), 561 (BLQ), and 447 (XJQ) GM respectively. A combination of density functional theory (DFT) and time-dependent density functional theory (TDDFT) approaches was used to investigate the relationships between the structures and the photophysical properties of these compounds. The results show that they may have a potential application as polarity-sensitive two-photon fluorescent probes.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 615 ◽  
Author(s):  
Bishwajeet Bhardwaj ◽  
Takeshi Sugiyama ◽  
Naoko Namba ◽  
Takayuki Umakoshi ◽  
Takafumi Uemura ◽  
...  

The application of dinaphthothienothiophene (DNTT) molecules, a novel organic semiconductor material, has recently increased due to its high charge carrier mobility and thermal stability. Since the structural properties of DNTT molecules, such as the molecular density distribution and molecular orientations, significantly affect their charge carrier mobility in organic field-effect transistors devices, investigating these properties would be important. Here, we report Raman spectroscopic studies on DNTT in a transistor device, which was further analyzed by the density functional theory. We also show a perspective of this technique for orientation analysis of DNTT molecules within a transistor device.


2019 ◽  
Vol 288 ◽  
pp. 37-43
Author(s):  
Altan Bolag ◽  
Yoshiro Yamashita

In this work, 3’-flouro-2,2',6,6'-tetraphenyl-4,4'-dipyranylidene (3FDP) was originally synthesized and investigated with density functional theory (DFT) calculations, ultraviolet–visible spectroscopy (UV–Vis) and cyclic voltammetry (CV) in comparison with 2,2',6,6'-tetraphenyl-4,4'-dipyranylidene (DP) and 4’-flouro-2,2',6,6'-tetraphenyl-4,4'-dipyranylidene (4FDP). 3FDP-based organic field-effect transistors (OFETs) were fabricated with bottom contact configuration on bare SiO2/Si substrate, 1,1,1,3,3,3-hexamethyldisilazane (HMDS) and octadecyltrichlorosilane (OTS) treated substrate, respectively. The HMDS-treated device showed highest mobility of 4 × 10−4 cm2 V−1 s−1, on/off ratio of 4 × 103 and threshold voltage of −10 V. Finally, vacuum deposited 3FDP films morphology was investigated by X-ray diffraction (XRD) analyses and the results showed higher crystallinity of HMDS-treated 3FDP film compared to the OTS-treated film, leading to a better FET performance.


ELEMENTOS ◽  
2013 ◽  
Vol 2 (2) ◽  
Author(s):  
Beynor Antonio Paez Sierra ◽  
Fredy Giovanni Mesa Rodríguez

The influence of external electric fields on the vibrational properties of Pentacene-based field effect transistors were investigated by Ramanspectroscopy.ThemonitoredRamanbandswereintherangefrom 1100cm−1 to1200cm−1,whereabroadbandispresentandenhanceddue to the external electric field. The process is modeled by density functional theory (DFT) at the B3LYP/3–21G level. Additionally, the relaxation of the Raman bands after the removal of the external field was determined from an exponential Debye like decay fitting to be approximately 94 min, this finding indicates that a long relaxation time ca. 8 h is required in order to recover the original structure. Experimentally and theoretically was demonstrated that the applied electric fields induce artificial traps in the organic layer mediated by charge carrier–dipole interaction.


2021 ◽  
Vol 03 (02) ◽  
pp. 303-308
Author(s):  
Dror Ben Abba Amiel ◽  
Choongik Kim ◽  
Ori Gidron

Donor–acceptor–donor (DAD) triad systems are commonly applied as active materials in ambipolar organic field-effect transistors, organic solar cells, and NIR-emitting organic light-emitting diodes. Often, these triads utilize oligothiophenes as donors, whereas their oxygen-containing analogs, oligofurans, are far less studied in this setup. Here we introduce a family of DAD triads in which the donors are oligofurans and the acceptor is benzothiadiazole. In a combined computational and experimental study, we show that these triads display optical bandgaps similar to those of their thiophene analogs, and that a bifuran donor is sufficient to produce emission in the NIR spectral region. The presence of a central acceptor unit increases the photostability of oligofuran-based DAD systems compared with parent oligofurans of the similar length.


Author(s):  
Huimin Guo ◽  
Xiaolin Ma ◽  
Zhiwen Lei ◽  
Yang Qiu ◽  
Bernhard Dick ◽  
...  

The electronic structure and photophysical properties of a series of N-Methyl and N-Acetyl substituted alloxazine (AZs) were investigated with extensive density functional theory (DFT) and time-dependent density functional theory (TD-DFT)...


2019 ◽  
Vol 233 (7) ◽  
pp. 895-911 ◽  
Author(s):  
Abdullah G. Al-Sehemi ◽  
Ahmad Irfan ◽  
Mehboobali Pannipara ◽  
Mohammed A. Assiri ◽  
Abul Kalam

Abstract A novel aggregation induced emission (AIE) active anthracene based dihydroquinazolinone derivative (probe 1) has been synthesized and characterized by means of spectroscopic methods. The photophysical properties of this probe have been investigated in solvents of different polarity display that fluorescence states are of intramolecular charge transfer (ICT) character. Probe 1 show clear AIE behavior in water/THF mixture on reaching water fraction 95%. The AIE behavior of probe 1 have been exploited for the detection of metal ions in aqueous solution which reveals high selectivity and sensitivity towards Cu2+ ions by colorimetrically and function as a chemosensor in a remarkable turn-off fluorescence manner. Further, the experimental results were investigated by computational means by optimizing the ground state geometries of probe 1 and probe 1-Cu complex using density functional theory (DFT) at B3LYP/6-31G∗∗ and B3LYP/6-31G∗∗(LANL2DZ) levels of theory. Intra-molecular charge transfer was observed in probe 1 while ligand to metal charge transfer (LMCT) for probe 1-Cu complex.


2001 ◽  
Vol 56 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Hans Bock ◽  
Sven Holl ◽  
Volker Krenzel

Abstract The structures of tri-and tetraiodo-substituted carbon compounds are determined either expe­rimentally by X-Ray Structure Analysis or, because crystallization of tetraiodothiophene could not be achieved, approximated by Density Functional Theory optimization of structural data from a donor/acceptor complex. The structures show noteworthy details such as a second po­lymorph of tetraiodoethene crystallized by sublimation or herringbone crystal packing patterns of tetraiodopyrrole derivatives. All molecular geometries are discussed and compared based on relativistic density functional theory calculations with 6 -31G* basis sets including iodine pseudopotentials. They reproduce even finer structural details due to van der Waals repulsion of the bulky iodo substituents. Natural Bond Orbital (NBO) charge distributions suggest positive partial charges at all iodine centers with the strongest polarization Cδ㊀ → Iδ㊉ in HCI3, which contains well over 97% iodine.


Sign in / Sign up

Export Citation Format

Share Document