scholarly journals p47phox siRNA-Loaded PLGA Nanoparticles Suppress ROS/Oxidative Stress-Induced Chondrocyte Damage in Osteoarthritis

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 443 ◽  
Author(s):  
Hyo Jung Shin ◽  
Hyewon Park ◽  
Nara Shin ◽  
Hyeok Hee Kwon ◽  
Yuhua Yin ◽  
...  

Osteoarthritis (OA) is the most common joint disorder that has had an increasing prevalence due to the aging of the population. Recent studies have concluded that OA progression is related to oxidative stress and reactive oxygen species (ROS). ROS are produced at low levels in articular chondrocytes, mainly by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and ROS production and oxidative stress have been found to be elevated in patients with OA. The cartilage of OA-affected rat exhibits a significant induction of p47phox, a cytosolic subunit of the NADPH oxidase, similarly to human osteoarthritis cartilage. Therefore, this study tested whether siRNA p47phox that is introduced with poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (p47phox si_NPs) can alleviate chondrocyte cell death by reducing ROS production. Here, we confirm that p47phox si_NPs significantly attenuated oxidative stress and decreased cartilage damage in mono-iodoacetate (MIA)-induced OA. In conclusion, these data suggest that p47phox si_NPs may be of therapeutic value in the treatment of osteoarthritis.

2021 ◽  
Vol 22 (22) ◽  
pp. 12277
Author(s):  
En-Shao Liu ◽  
Nai-Ching Chen ◽  
Tzu-Ming Jao ◽  
Chien-Liang Chen

Medial vascular calcification has emerged as a key factor contributing to cardiovascular mortality in patients with chronic kidney disease (CKD). Vascular smooth muscle cells (VSMCs) with osteogenic transdifferentiation play a role in vascular calcification. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors reduce reactive oxygen species (ROS) production and calcified-medium–induced calcification of VSMCs. This study investigates the effects of dextromethorphan (DXM), an NADPH oxidase inhibitor, on vascular calcification. We used in vitro and in vivo studies to evaluate the effect of DXM on artery changes in the presence of hyperphosphatemia. The anti-vascular calcification effect of DXM was tested in adenine-fed Wistar rats. High-phosphate medium induced ROS production and calcification of VSMCs. DXM significantly attenuated the increase in ROS production, the decrease in ATP, and mitochondria membrane potential during the calcified-medium–induced VSMC calcification process (p < 0.05). The protective effect of DXM in calcified-medium–induced VSMC calcification was not further increased by NADPH oxidase inhibitors, indicating that NADPH oxidase mediates the effect of DXM. Furthermore, DXM decreased aortic calcification in Wistar rats with CKD. Our results suggest that treatment with DXM can attenuate vascular oxidative stress and ameliorate vascular calcification.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Sunil Joshi ◽  
Ammon B. Peck ◽  
Saeed R. Khan

A major role of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes is to catalyze the production of superoxides and other reactive oxygen species (ROS). These ROS, in turn, play a key role as messengers in cell signal transduction and cell cycling, but when they are produced in excess they can lead to oxidative stress (OS). Oxidative stress in the kidneys is now considered a major cause of renal injury and inflammation, giving rise to a variety of pathological disorders. In this review, we discuss the putative role of oxalate in producing oxidative stress via the production of reactive oxygen species by isoforms of NADPH oxidases expressed in different cellular locations of the kidneys. Most renal cells produce ROS, and recent data indicate a direct correlation between upregulated gene expressions of NADPH oxidase, ROS, and inflammation. Renal tissue expression of multiple NADPH oxidase isoforms most likely will impact the future use of different antioxidants and NADPH oxidase inhibitors to minimize OS and renal tissue injury in hyperoxaluria-induced kidney stone disease.


Toxins ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 502
Author(s):  
Shoma Tanaka ◽  
Hiroshi Watanabe ◽  
Takehiro Nakano ◽  
Tadashi Imafuku ◽  
Hiromasa Kato ◽  
...  

Adipose tissue inflammation appears to be a risk factor for the progression of chronic kidney disease (CKD), but the effect of CKD on adipose tissue inflammation is poorly understood. The purpose of this study was to clarify the involvement of uremic toxins (indoxyl sulfate (IS), 3-indoleacetic acid, p-cresyl sulfate and kynurenic acid) on CKD-induced adipose tissue inflammation. IS induces monocyte chemoattractant protein-1 (MCP-1) expression and reactive oxygen species (ROS) production in the differentiated 3T3L-1 adipocyte. An organic anion transporter (OAT) inhibitor, an NADPH oxidase inhibitor or an antioxidant suppresses the IS-induced MCP-1 expression and ROS production, suggesting the OAT/NADPH oxidase/ROS pathway is involved in the action of IS. Co-culturing 3T3L-1 adipocytes and mouse macrophage cells showed incubating adipocytes with IS increased macrophage infiltration. An IS-overload in healthy mice increased IS levels, oxidative stress and MCP-1 expression in epididymal adipose tissue compared to unloaded mice. Using 5/6-nephrectomized mice, the administration of AST-120 suppressed oxidative stress and the expression of MCP-1, F4/80 and TNF-α in epididymal adipose tissue. These collective data suggest IS could be a therapeutic target for the CKD-related inflammatory response in adipose tissue, and that AST-120 could be useful for the treatment of IS-induced adipose tissue inflammation.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Wei Zhu ◽  
Zhijian Zhao ◽  
Fu-Ju Chou ◽  
Li Zuo ◽  
Tongzu Liu ◽  
...  

Females develop kidney stones less frequently than males do. However, it is unclear if this gender difference is related to altered estrogen/estrogen receptor (ER) signaling. Here, we found that ER beta (ERβ) signals could suppress hepatic oxalate biosynthesis via transcriptional upregulation of the glyoxylate aminotransferase (AGT1) expression. Results from multiple in vitro renal cell lines also found that ERβ could function via suppressing the oxalate-induced injury through increasing the reactive oxygen species (ROS) production that led to a decrease of the renal calcium oxalate (CaOx) crystal deposition. Mechanism study results showed that ERβ suppressed oxalate-induced oxidative stress via transcriptional suppression of the NADPH oxidase subunit 2 (NOX2) through direct binding to the estrogen response elements (EREs) on the NOX2 5′ promoter. We further applied two in vivo mouse models with glyoxylate-induced renal CaOx crystal deposition and one rat model with 5% hydroxyl-L-proline-induced renal CaOx crystal deposition. Our data demonstrated that mice lacking ERβ (ERβKO) as well as mice or rats treated with ERβ antagonist PHTPP had increased renal CaOx crystal deposition with increased urinary oxalate excretion and renal ROS production. Importantly, targeting ERβ-regulated NOX2 with the NADPH oxidase inhibitor, apocynin, can suppress the renal CaOx crystal deposition in the in vivo mouse model. Together, results from multiple in vitro cell lines and in vivo mouse/rat models all demonstrate that ERβ may protect against renal CaOx crystal deposition via inhibiting the hepatic oxalate biosynthesis and oxidative stress-induced renal injury.


Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 171 ◽  
Author(s):  
Anne D. Hafstad ◽  
Synne S. Hansen ◽  
Jim Lund ◽  
Celio X. C. Santos ◽  
Neoma T. Boardman ◽  
...  

Obesity and diabetes are independent risk factors for cardiovascular diseases, and they are associated with the development of a specific cardiomyopathy with elevated myocardial oxygen consumption (MVO2) and impaired cardiac efficiency. Although the pathophysiology of this cardiomyopathy is multifactorial and complex, reactive oxygen species (ROS) may play an important role. One of the major ROS-generating enzymes in the cardiomyocytes is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), and many potential systemic activators of NOX2 are elevated in obesity and diabetes. We hypothesized that NOX2 activity would influence cardiac energetics and/or the progression of ventricular dysfunction following obesity. Myocardial ROS content and mechanoenergetics were measured in the hearts from diet-induced-obese wild type (DIOWT) and global NOK2 knock-out mice (DIOKO) and in diet-induced obese C57BL/6J mice given normal water (DIO) or water supplemented with the NOX2-inhibitor apocynin (DIOAPO). Mitochondrial function and ROS production were also assessed in DIO and DIOAPO mice. This study demonstrated that ablation and pharmacological inhibition of NOX2 both improved mechanical efficiency and reduced MVO2 for non-mechanical cardiac work. Mitochondrial ROS production was also reduced following NOX2 inhibition, while cardiac mitochondrial function was not markedly altered by apocynin-treatment. Therefore, these results indicate a link between obesity-induced myocardial oxygen wasting, NOX2 activation, and mitochondrial ROS.


2016 ◽  
Vol 213 (9) ◽  
pp. 1851-1864 ◽  
Author(s):  
Keer Sun ◽  
Vijaya Kumar Yajjala ◽  
Christopher Bauer ◽  
Geoffrey A. Talmon ◽  
Karl J. Fischer ◽  
...  

Clinical post-influenza Staphylococcus aureus pneumonia is characterized by extensive lung inflammation associated with severe morbidity and mortality even after appropriate antibiotic treatment. In this study, we show that antibiotics rescue nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (Nox2)–deficient mice but fail to fully protect WT animals from influenza and S. aureus coinfection. Further experiments indicate that the inefficacy of antibiotics against coinfection is attributable to oxidative stress–associated inflammatory lung injury. However, Nox2-induced lung damage during coinfection was not associated with aggravated inflammatory cytokine response or cell infiltration but rather caused by reduced survival of myeloid cells. Specifically, oxidative stress increased necrotic death of inflammatory cells, thereby resulting in lethal damage to surrounding tissue. Collectively, our results demonstrate that influenza infection disrupts the delicate balance between Nox2-dependent antibacterial immunity and inflammation. This disruption leads to not only increased susceptibility to S. aureus infection, but also extensive lung damage. Importantly, we show that combination treatment of antibiotic and NADPH oxidase inhibitor significantly improved animal survival from coinfection. These findings suggest that treatment strategies that target both bacteria and oxidative stress will significantly benefit patients with influenza-complicated S. aureus pneumonia.


2007 ◽  
Vol 19 (1) ◽  
pp. 208
Author(s):  
N. W. K. Karja ◽  
K. Kikuchi ◽  
M. Ozawa ◽  
M. Fahrudin ◽  
T. Somfai ◽  
...  

Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase), an enzyme required to catalyze the oxidation of NADPH to NADP during the metabolism of glucose via the pentose phosphate pathway (PPP), was considered as contributing to intracellular reactive oxygen species (ROS) production. Production of superoxide anion and H2O2 via NADPH oxidase has been reported on a rabbit blastocyst surface (Manes and Lai 1995 J. Reprod. Fertil. 104, 69–75). The objective of this study was to examine the effects on in vitro development and intracellular ROS content after the addition of diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase, or dehydroepiandrosterone (DHEA), an inhibitor of glucose-6-phosphate dehydrogenase (G6PDH), to culture medium during the early embryonic development of in vitro-produced (IVP) porcine embryos. To confirm that these inhibitors lead to reduction in NADPH concentration in the embryo and hence likely to be inhibiting the PPP, a brilliant cresyl blue (BCB) test was performed on Day 2 (the day of insemination = Day 0) of culture. Porcine cumulus–oocyte complexes were matured and fertilized in vitro as described previously (Kikuchi et al. 2002 Biol. Reprod. 66, 1033–1041). Prezumptive zygotes were then cultured in NCSU-37 supplemented with 5.5 mM glucose and DPI at concentrations of 0.5 or 1 nM or DHEA at concentrations of 10 or 100 �M (DPI-0.5, DPI-1, DHEA-10 and DHEA-100 groups, respectively) from Day 0 to Day 2 of culture. All of the embryos were cultured subsequently until Day 6 in NCSU-37 supplemented with only 5.5 mM glucose. Data were analyzed by ANOVA. On Day 6, the development to the blastocyst stage of embryos in DPI-0.5, DPI-1, DHEA-10, and DHEA-100 groups were 16.1, 17.6, 16.1, and 19.5%, respectively, which were not significantly different from that of the control group (17.5%) (n d 165 per group, 5 replicates). However, the mean cell number in blastocysts derived from DPI-1, DHEA-10, and DHEA-100 groups (40.8 � 2.3, 39.3 � 1.7, and 42.5 � 2.7, respectively) was significantly higher (P &lt; 0.01) than those in the control (33.4 � 1.6) and DPI-0.5 (32.7 � 1.6) groups. At 20 min after an exposure to BCB, the percentage of BCB+ embryos in DPI-1, DHEA-10, and DHEA-100 groups (73.8, 79.9, and 77.8%, respectively) were significantly higher (P &lt; 0.01) than those in the control and DPI-0.5 groups (42% and 53.9%, respectively) (n = 81-92 per group, 6 replicates), indicating that these two inhibitors effectively induce the reduction of NADPH concentration in the embryos. Moreover, the addition of DPI at 1 nM or DHEA at 10 or 100 �M significantly decreased the H2O2 content of Day 2 embryos as compared with control embryos (n = 48-53 per group, 7 replicates). These results suggest that the addition of either DPI or DHEA to the medium during the first 2 days of culture did not impair the development of the embryos to the blastocyst stage. Decrease of cellular ROS production in Day 2 embryos in this study is interpreted as a result of inhibition of the NADPH oxidase by DPI or of the G6PDH by DHEA.


Blood ◽  
2013 ◽  
Vol 121 (11) ◽  
pp. 2099-2107 ◽  
Author(s):  
Alex George ◽  
Suvarnamala Pushkaran ◽  
Diamantis G. Konstantinidis ◽  
Sebastian Koochaki ◽  
Punam Malik ◽  
...  

Key Points Sickle RBC ROS production is mediated in part by NADPH oxidase activity. Sickle RBC ROS production can be induced by plasma signaling molecules.


2015 ◽  
pp. 303-312 ◽  
Author(s):  
M. VOKURKOVÁ ◽  
H. RAUCHOVÁ ◽  
L. ŘEZÁČOVÁ ◽  
I. VANĚČKOVÁ ◽  
J. ZICHA

Enhanced production of superoxide radicals by nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase in the brain and/or kidney of salt hypertensive Dahl rats has been proposed to participate in the pathogenesis of this form of experimental hypertension. Most information was obtained in young Dahl salt-sensitive (DS) rats subjected to high salt intake prior to sexual maturation. Therefore, the aim of our study was to investigate whether salt hypertension induced in adult DS rats is also accompanied with a more pronounced oxidative stress in the brain or kidney as compared to Dahl salt-resistant (DR) controls. NADPH oxidase activity as well as the content of thiobarbituric acid-reactive substances (TBARS) and conjugated dienes (oxidative index), which indicate a degree of lipid peroxidation, were evaluated in two brain regions (containing either hypothalamic paraventricular nucleus or rostral ventrolateral medulla) as well as in renal medulla and cortex. High salt intake induced hypertension in DS rats but did not modify blood pressure in DR rats. DS and DR rats did not differ in NADPH oxidase-dependent production of ROS, TBARS content or oxidative index in either part of the brain. In addition, high-salt diet did not change significantly any of these brain parameters. In contrast, the enhanced NADPH oxidase-mediated ROS production (without significant signs of increased lipid peroxidation) was detected in the renal medulla of salt hypertensive DS rats. Our findings suggest that there are no signs of enhanced oxidative stress in the brain of adult Dahl rats with salt hypertension induced in adulthood.


2018 ◽  
Vol 4 (1) ◽  
pp. 170-181
Author(s):  
Darrell A. Jackson ◽  
Fanny Astruc-Diaz ◽  
Nicole M. Byrnes ◽  
Phillip H. Beske

Most 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid receptors (AMPARs) expressed on adult hippocampal pyramidal neurons contain the edited form of GluA2 (Q607R) and are thus impermeable to Ca2+/Zn2+ entry.  Following ischemic injury, these receptors undergo a subunit composition change, switching from a GluA2-containing Ca2+/Zn2+-impermeable AMPAR to a GluA2-lacking Ca2+/Zn2+-permeable AMPAR. Recent studies indicate that an oxidative stress signaling pathway is responsible for the I/R-induced changes in AMPAR subunit composition.  Studies suggest that nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase), a superoxide generator, is the source that initiates the oxidative stress-signaling cascade during post-ischemic reperfusion. The objective of the present study was to determine if suppression of NADPH oxidase activity prevents the increase in phosphorylation and subsequent internalization of the GluA2 AMPAR subunit during reperfusion of post-ischemic hippocampal slices. In this study, we demonstrated that exposure of adult rat hippocampal slices to oxygen glucose deprivation/reperfusion (OGD/R) results in an increase in Ser880 phosphorylation of the GluA2 subunit.  The increase in Ser880 phosphorylation resulted in the dissociation of GluA2 from the scaffolding proteins Glutamate receptor-interacting protein 1 (GRIP1) and AMPAR binding protein (ABP), thus enabling the association of GluA2 with protein interacting with C kinase 1 (PICK1). OGD/R also resulted in an increase in the association of activated protein kinase C ? (PKC?) with PICK1. We have found that pharmacological inhibition of NADPH oxidase with apocynin diminishes the OGD/R-induced increase in activated PKC? association with PICK1 and subsequent Ser880 phosphorylation of GluA2. Suppression of NADPH oxidase activity also blunted OGD/R-induced decreased association of GluA2 with the scaffolding proteins GRIP1 and ABP.  Protein phosphatase 2A (PP2A), which regulates PKC? activity by dephosphorylating the kinase, was inactivated by OGD/R-induced increase in tyrosine phosphorylation of the phosphatase (Y307). Inhibition of NADPH oxidase activity ameliorated OGD/R-induced PP2A phosphorylation and inactivation. Our findings are consistent with a model of OGD/R-induced Ser880 phosphorylation of GluA2 that implicates NADPH oxidase mediated inactivation of PP2A and sustained PKC? phosphorylation of GluA2.


Sign in / Sign up

Export Citation Format

Share Document