scholarly journals DLP 3D Printing Meets Lignocellulosic Biopolymers: Carboxymethyl Cellulose Inks for 3D Biocompatible Hydrogels

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1655 ◽  
Author(s):  
Giuseppe Melilli ◽  
Irene Carmagnola ◽  
Chiara Tonda-Turo ◽  
Fabrizio Pirri ◽  
Gianluca Ciardelli ◽  
...  

The development of new bio-based inks is a stringent request for the expansion of additive manufacturing towards the development of 3D-printed biocompatible hydrogels. Herein, methacrylated carboxymethyl cellulose (M-CMC) is investigated as a bio-based photocurable ink for digital light processing (DLP) 3D printing. CMC is chemically modified using methacrylic anhydride. Successful methacrylation is confirmed by 1H NMR and FTIR spectroscopy. Aqueous formulations based on M-CMC/lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) photoinitiator and M-CMC/Dulbecco’s Modified Eagle Medium (DMEM)/LAP show high photoreactivity upon UV irradiation as confirmed by photorheology and FTIR. The same formulations can be easily 3D-printed through a DLP apparatus to produce 3D shaped hydrogels with excellent swelling ability and mechanical properties. Envisaging the application of the hydrogels in the biomedical field, cytotoxicity is also evaluated. The light-induced printing of cellulose-based hydrogels represents a significant step forward in the production of new DLP inks suitable for biomedical applications.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Magda Silva ◽  
Isabel S. Pinho ◽  
José A. Covas ◽  
Natália M. Alves ◽  
Maria C. Paiva

AbstractAdditive manufacturing techniques established a new paradigm in the manufacture of composite materials providing a simple solution to build complex, custom designed shapes. In the biomedical field, 3D printing enabled the production of scaffolds with patient-specific requirements, controlling product architecture and microstructure, and have been proposed to regenerate a variety of tissues such as bone, cartilage, or the nervous system. Polymers reinforced with graphene or graphene derivatives have demonstrated potential interest for applications that require electrical and mechanical properties as well as enhanced cell response, presenting increasing interest for applications in the biomedical field. The present review focuses on graphene-based polymer nanocomposites developed for additive manufacturing fabrication, provides an overview of the manufacturing techniques available to reach the different biomedical applications, and summarizes relevant results obtained with 3D printed graphene/polymer scaffolds and biosensors.


2021 ◽  
Vol 11 (18) ◽  
pp. 8545
Author(s):  
So-Ree Hwang ◽  
Min-Soo Park

Additive manufacturing, commonly called 3D printing, has been studied extensively because it can be used to fabricate complex structures; however, polymer-based 3D printing has limitations in terms of implementing certain functionalities, so it is limited in the production of conceptual prototypes. As such, polymer-based composites and multi-material 3D printing are being studied as alternatives. In this study, a DLP 3D printer capable of printing multiple composite materials was fabricated using a movable separator and structures with various properties were fabricated by selectively printing two composite materials. After the specimen was fabricated based on the ASTM, the basic mechanical properties of the structure were compared through a 3-point bending test and a ball rebound test. Through this, it was shown that structures with various mechanical properties can be fabricated using the proposed movable-separator-based DLP process. In addition, it was shown that this process can be used to fabricate anisotropic structures, whose properties vary depending on the direction of the force applied to the structure. By fabricating multi-joint grippers with varying levels of flexibility, it was shown that the proposed process can be applied in the fabrication of soft robots as well.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4371
Author(s):  
Dorin-Ioan Catana ◽  
Mihai-Alin Pop ◽  
Denisa-Iulia Brus

Additive manufacturing is one of the technologies that is beginning to be used in new fields of parts production, but it is also a technology that is constantly evolving, due to the advances made by researchers and printing equipment. The paper presents how, by using the simulation process, the geometry of the 3D printed structures from PLA and PLA-Glass was optimized at the bending stress. The optimization aimed to reduce the consumption of filament (material) simultaneously with an increase in the bending resistance. In addition, this paper demonstrates that the simulation process can only be applied with good results to 3D printed structures when their mechanical properties are known. The inconsistency of printing process parameters makes the 3D printed structures not homogeneous and, consequently, the occurrence of errors between the test results and those of simulations become natural and acceptable. The mechanical properties depend on the values of the printing process parameters and the printing equipment because, in the case of 3D printing, it is necessary for each combination of parameters to determine their mechanical properties through specific tests.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1487 ◽  
Author(s):  
Yuhan Liao ◽  
Chang Liu ◽  
Bartolomeo Coppola ◽  
Giuseppina Barra ◽  
Luciano Di Maio ◽  
...  

Additive manufacturing (AM) is a promising technology for the rapid tooling and fabrication of complex geometry components. Among all AM techniques, fused filament fabrication (FFF) is the most widely used technique for polymers. However, the consistency and properties control of the FFF product remains a challenging issue. This study aims to investigate physical changes during the 3D printing of polylactic acid (PLA). The correlations between the porosity, crystallinity and mechanical properties of the printed parts were studied. Moreover, the effects of the build-platform temperature were investigated. The experimental results confirmed the anisotropy of printed objects due to the occurrence of orientation phenomena during the filament deposition and the formation both of ordered and disordered crystalline forms (α and δ, respectively). A heat treatment post-3D printing was proposed as an effective method to improve mechanical properties by optimizing the crystallinity (transforming the δ form into the α one) and overcoming the anisotropy of the 3D printed object.


2021 ◽  
Vol 11 (15) ◽  
pp. 6835
Author(s):  
Sang-U Bae ◽  
Birm-June Kim

Photopolymer composites filled with cellulose nanocrystal (CNC) and/or inorganic nanofillers were fabricated by using digital light processing (DLP) 3D printing. To investigate the effects of different CNC lyophilization concentrations and behaviors of CNC particles in the photopolymer composites, morphological and mechanical properties were analyzed. CNC loading levels affected the morphological and mechanical properties of the filled composites. Better CNC dispersion was seen at a lower lyophilization concentration, and the highest mechanical strength was observed in the 0.25 wt% CNC-filled composite. Furthermore, nano-precipitated calcium carbonate (nano-PCC) and nanoclay were added to photocurable resins, and then the effect of inorganic nanofillers on the morphological and mechanical properties of the composites were evaluated. By analyzing the morphological properties, the stress transfer mechanism of nano-PCC and nanoclay in the photopolymer composites was identified and related models were presented. These supported the improved mechanical strength of the composites filled with CNC, nano-PCC, and nanoclay. This study suggested a new approach using wood-derived cellulose nanomaterials and inorganic nanofillers as effective fillers for DLP 3D printing.


Author(s):  
Seyed M. Allameh ◽  
Roger Miller ◽  
Hadi Allameh

Additive manufacturing technology has significantly matured over the last two decades. Recent progress in 3D printing has made it an attractive choice for fabricating complex shapes out of select materials possessing desirable properties at small and large scales. The application of biomimetics to the fabrication of structural composites has been shown to enhance their toughness and dynamic shear resistance. Building homes from bioinspired composites is possible if the process is automated. This can be achieved through additive manufacturing where layers of hard and soft materials can be deposited by 3D printing. This study examines mechanical properties of reinforced concrete fabricated by 3D printing. Preliminary results of 4-point bend tests are presented and the implications of 3D-printed home building on current conventional construction practices are discussed.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 598
Author(s):  
Marek Pagac ◽  
Jiri Hajnys ◽  
Quoc-Phu Ma ◽  
Lukas Jancar ◽  
Jan Jansa ◽  
...  

Additive manufacturing (3D printing) has significantly changed the prototyping process in terms of technology, construction, materials, and their multiphysical properties. Among the most popular 3D printing techniques is vat photopolymerization, in which ultraviolet (UV) light is deployed to form chains between molecules of liquid light-curable resin, crosslink them, and as a result, solidify the resin. In this manuscript, three photopolymerization technologies, namely, stereolithography (SLA), digital light processing (DLP), and continuous digital light processing (CDLP), are reviewed. Additionally, the after-cured mechanical properties of light-curable resin materials are listed, along with a number of case studies showing their applications in practice. The manuscript aims at providing an overview and future trend of the photopolymerization technology to inspire the readers to engage in further research in this field, especially regarding developing new materials and mathematical models for microrods and bionic structures.


RSC Advances ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 5681-5689 ◽  
Author(s):  
Shan Li ◽  
Yubei Zhang ◽  
Tong Zhao ◽  
Weijian Han ◽  
Wenyan Duan ◽  
...  

SiBCN/Si3N4w components with high mechanical properties were manufactured using DLP 3D-printing technology.


Author(s):  
Jordan Garcia ◽  
Robert Harper ◽  
Y. Charles Lu

Abstract Composite products are often created using traditional manufacturing methods such as compression or injection molding. Recently, additive manufacturing (3D printing) techniques have been used for fabricating composites. 3D printing is the process of producing three-dimensional parts through the successive combination of various layers of material. This layering effect in combination with exposure to ambient (or reduced) temperature and pressure cause the finished products to have inconsistent microstructures. The inconsistent microstructures along with the oriented reinforcing fibers create anisotropic parts with difficulty to predict mechanical properties. In this paper, the mechanical properties of fiber reinforced polymer composites produced by additive manufacturing technique (3D printing) and by traditional manufacturing technique (compression molding) were investigated. Three open-source 3D printers, i.e. FlashForge Dreamer, Tevo Tornado, and Prusa i3 Mk3, were used to fabricate bending samples from carbon-fiber reinforced ABS (acrylonitrile butadiene styrene). Results showed that there exist significant discrepancies and anisotropies in mechanical properties of 3D printed composites. First, the properties vary greatly among parts made from different printers. Secondly, the mechanical responses of 3D printed parts strongly depend upon the orientations of the filaments. Parts with the infill oriented along the length of the specimens showed the most favorable mechanical responses such as Young’s modulus, maximum strength, and toughness. Thirdly, all 3D printed parts exhibit inferior properties to those made by conventional manufacturing. Finally, theoretical modeling has been attempted to predict the mechanical responses of 3D printed products and can potentially be used to “design” the 3D printing processes to achieve the optimal performance.


Author(s):  
Jordan Garcia ◽  
Robert Harper ◽  
Y. Charles Lu

Abstract Composite products are often created using traditional manufacturing methods such as compression or injection molding. Recently, additive manufacturing (3D printing) techniques have been used for fabricating composites. 3D printing is the process of producing three-dimensional parts through the successive combination of various layers of material. This layering effect in combination with exposure to ambient (or reduced) temperature and pressure cause the finished products to have inconsistent microstructures. The inconsistent microstructures along with the oriented reinforcing fibers create anisotropic parts with difficulty to predict mechanical properties. In this paper, the mechanical properties of fiber reinforced polymer composites produced by additive manufacturing technique (3D printing) and by traditional manufacturing technique (compression molding) were investigated. Three open-source 3D printers, i.e. FlashForge Dreamer, Tevo Tornado, and Prusa i3 Mk3, were used to fabricate bending samples from carbon-fiber reinforced ABS (acrylonitrile butadiene styrene). Results showed that there exist significant discrepancies and anisotropies in mechanical properties of 3D printed composites. First, the properties vary greatly among parts made from different printers. Secondly, the mechanical responses of 3D printed parts strongly depend upon the orientations of the filaments. Parts with the infill oriented along the length of the specimens showed the most favorable mechanical responses such as Young's modulus, maximum strength, and toughness. Thirdly, all 3D printed parts exhibit inferior properties to those made by conventional manufacturing. Finally, theoretical modeling has been attempted to predict the mechanical responses of 3D printed products and can be used to “design” the 3D printing processes.


Sign in / Sign up

Export Citation Format

Share Document