scholarly journals Performance of Heat-Insulating Materials Doped with Basalt Fibres for Use in Mines

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2057
Author(s):  
Yewei Jiang ◽  
Song Xin ◽  
Hongyu Li ◽  
Long Zhang ◽  
Chuanbin Hou ◽  
...  

To solve high-temperature-induced hazards in mines, heat-insulating materials were prepared by utilising basalt fibres and high-strength ceramsite combined with cementing materials. Through orthogonal tests and data analyses, the optimal combination of the heat-insulating materials doped with basalt fibres was determined as A1B1C1, that is, doping with 45% basalt fibres, a length of the basalt fibres of 6 mm, and doping with 20% ceramsite. The performance indices corresponding to the optimal comprehensive combination of the heat-insulating materials doped with basalt fibres included a density of 1200 kg/m3, thermal conductivity of 0.151 W/(mK), compressive strength of 9.7 MPa, flexural strength of 3.6 MPa, and a water-seepage depth of 25.4 mm. Numerical simulations verified that the materials presented favourable thermal insulation performance.

Alloy Digest ◽  
2010 ◽  
Vol 59 (1) ◽  

Abstract Kubota KNC-03 is a grade with a combination of high strength and excellent resistance to oxidation. These properties make this alloy suitable for long-term service at temperature up to 1250 deg C (2282 deg F). This datasheet provides information on physical properties, hardness, elasticity, tensile properties, and compressive strength as well as creep. It also includes information on high temperature performance as well as casting and joining. Filing Code: Ni-676. Producer or source: Kubota Metal Corporation, Fahramet Division. See also Alloy Digest Ni-662, April 2008.


Alloy Digest ◽  
2020 ◽  
Vol 69 (11) ◽  

Abstract Meehanite GB300 is a pearlitic gray cast iron that has a minimum tensile strength of 300 MPa (44 ksi), when determined on test pieces machined from separately cast, 30 mm (1.2 in.) diameter test bars. This grade exhibits high strength while still maintaining good thermal conductivity and good machinability. It is generally used for applications where the thermal conductivity requirements preclude the use of other higher-strength materials, such as spheroidal graphite cast irons, which have inferior thermal properties. This datasheet provides information on physical properties, hardness, tensile properties, and compressive strength as well as fatigue. It also includes information on low and high temperature performance as well as heat treating, machining, and joining. Filing Code: CI-75. Producer or source: Meehanite Metal Corporation.


2011 ◽  
Vol 261-263 ◽  
pp. 13-18
Author(s):  
Ke Qing Li ◽  
De Ping Chen ◽  
Shi Li Zhang ◽  
Bao Shun Liu

Aimed at improving the waterproofing property of foamed concrete, a heat-insulating and waterproofing composite applied in underground engineering was prepared by using cementitious capillary crystalline waterproofing material and foamed concrete. The properties of foamed concrete and composite such as compressive strength, water absorption and thermal conductivity were tested and contrasted, and the compounding reaction mechanism was analyzed. The results show that, compared with foamed concrete, the water absorption of composite has been significantly reduced while the heat-insulating property of foamed concrete is maintained and the overall waterproofing and heat-insulation performance has been significantly improved. A new approach solving underground heat-harm such as high temperature and high humidity is provided.


2020 ◽  
Vol 10 (4) ◽  
pp. 1314
Author(s):  
Haihua Wu ◽  
Kui Chen ◽  
Yafeng Li ◽  
Chaoqun Ren ◽  
Yu Sun ◽  
...  

The 3D graphite/ceramic composite prototyping parts directly prepared by selective laser sintering (SLS) were porous, which led to poor strength and low thermal conductivity. In order to obtain low thermal conductivity and high strength, its thermal conductivity and compressive strength were adjusted by changing the mixture powder composition and adding post-processing. The result showed that the addition of silicon powder in the mixture powder could significantly improve the compressive strength and thermal conductivity. The addition of expanded graphite was beneficial to the formation of the closed pores in the matrix, which slightly reduced the compressive strength but significantly reduced the thermal conductivity. The 3D graphite/ceramic composite part showed an order of magnitude improvement in compressive strength (from 1.25 to 13.87 MPa) but relatively small change in thermal conductivity (from 1.40 to 2.12 W·m−1K−1) and density (from 0.53 to 1.13 g·cm−3) by post-processing. Reasonable mixture powder composition and post-processing were determined and realized the possibility of fabricating a 3D graphite/ceramic composite part with low thermal conductivity but high compressive strength. Furthermore, it could be used for the repeated casting of steel castings, and through the comparative analysis of casting defects, the prepared graphite/ceramic composite part was expected to replace water glass sand mold.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1493 ◽  
Author(s):  
In-Hwan Yang ◽  
Jihun Park

The thermal conductivity of concrete is a key factor for efficient energy consumption in concrete buildings because thermal conductivity plays a significant role in heat transfer through concrete walls. This study investigated the effects of replacing fine aggregates with coal bottom ash (CBA) and the influence of curing age on the thermal properties of high-strength concrete with a compressive strength exceeding 60 MPa. The different CBA aggregate contents included 25%, 50%, 75%, and 100%, and different curing ages included 28 and 56 days. For concrete containing CBA fine aggregate, the thermal and mechanical properties, including the unit weight, thermal conductivity, compressive strength, and ultrasonic velocity, were measured. The experimental results reveal that the unit weight and thermal conductivity of the CBA concrete were highly dependent on the CBA content. The unit weight, thermal conductivity, and compressive strength of the concrete decreased as the CBA content increased. Relationships between the thermal conductivity and the unit weight, thermal conductivity and compressive strength of the CBA concrete were proposed in the form of exponential functions. The equations proposed in this study provided predictions that were in good agreement with the test results. In addition, the test results show that there was an approximately linear relationship between the thermal conductivity and ultrasonic velocity of the CBA concrete.


Author(s):  
Gyu Yong Kim ◽  
Young Wook Lee ◽  
Nenad Gucunski ◽  
Gyeong Cheol Choe ◽  
Min Ho Yoon

The high-temperature creep of Ultra-High-Strength Concrete (UHSC) has been investigated in this study. The purpose of this study is to evaluated total strain and high-temperature creep at elevated temperatures under loading condition of UHSC. To evaluate the strain behaviour of UHSC at elevated temperatures, ϕ100 mm × 200 mm cylindrical specimens of UHSC with compressive strengths of 80, 130 and 180 MPa concrete were heated to 700 °C at a rate of 1 °C/min. The total strain and high-temperature-creep were measured under the loading condition of 0.25 of the compressive strength at room temperature. As results, Total strain of UHSC increased showing shrinkage with increasing compressive strength. The high-temperature creep of UHSC increased with the temperature and higher level of compressive strength showed bigger high-temperature creep.


Alloy Digest ◽  
1956 ◽  
Vol 5 (2) ◽  

Abstract Berylco 275CR is a heat treatable beryllium copper casting alloy having high strength and hardness, and excellent corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: Cu-35. Producer or source: Beryllium Corporation.


Alloy Digest ◽  
1996 ◽  
Vol 45 (8) ◽  

Abstract GlidCop AL-60 is copper strengthened by adding a second phase (aluminum oxide) to the matrix by internal oxidation. The process produces a product with resistance to thermal softening, high strength, and creep resistance, combined with high electrical and thermal conductivity. (See also GlidCop AL-15, Alloy Digest Cu-603, May 1996, and GlidCop AL-25, Alloy Digest Cu-604, June 1996.) This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance as well as forming and joining. Filing Code: CU-608. Producer or source: SCM Metal Products Inc.


Alloy Digest ◽  
1996 ◽  
Vol 45 (5) ◽  

Abstract GlidCop AL-15 is copper strengthened by adding a second phase, aluminum oxide, to the matrix by internal oxidation. The process produces a product with resistance to thermal softening, high strength, and creep, combined with high electrical and thermal conductivity. (See also GlidCop AL-25, Alloy Digest Cu-604, June 1996, and GlidCop AL-60, Alloy Digest Cu-608, August 1996.) This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming and joining. Filing Code: CU-603. Producer or source: SCM Metal Products Inc.


Sign in / Sign up

Export Citation Format

Share Document