scholarly journals AC Electrokinetics of Salt-Free Multilayered Polymer-Grafted Particles

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2097
Author(s):  
Silvia Ahualli ◽  
Sara Bermúdez ◽  
Félix Carrique ◽  
María L. Jiménez ◽  
Ángel V. Delgado

Interest in the electrical properties of the interface between soft (or polymer-grafted) nanoparticles and solutions is considerable. Of particular significance is the case of polyelectrolyte-coated particles, mainly taking into account that the layer-by-layer procedure allows the control of the thickness and permeability of the layer, and the overall charge of the coated particle. Like in simpler systems, electrokinetic determinations in AC fields (including dielectric dispersion in the 1 kHz–1 MHz frequency range and dynamic electrophoresis by electroacoustic methods in the 1–18 MHz range) provide a large amount of information about the physics of the interface. Different models have dealt with the electrokinetics of particles coated by a single polymer layer, but studies regarding multi-layered particles are far scarcer. This is even more significant in the case of so-called salt-free systems; ideally, the only charges existing in this case consist of the charge in the layer(s) and the core particle itself, and their corresponding countercharges, with no other ions added. The aims of this paper are as follows: (i) the elaboration of a model for the evaluation of the electrokinetics of multi-grafted polymer particles in the presence of alternating electric fields, in dispersion media where no salts are added; (ii) to carry out an experimental evaluation of the frequency dependence of the dynamic (or AC) electrophoretic mobility and the dielectric permittivity of suspensions of polystyrene latex spherical particles coated with successive layers of cationic, anionic, and neutral polymers; and (iii) finally, to perform a comparison between predictions and experimental results, so that it can be demonstrated that the electrokinetic analysis is a useful tool for the in situ characterization of multilayered particles.

2001 ◽  
Vol 87 (16) ◽  
Author(s):  
Richard A. Gray ◽  
Oleg A. Mornev ◽  
José Jalife ◽  
Oleg V. Aslanidi ◽  
Arkady M. Pertsov

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1398
Author(s):  
Yong-Qi Zhang ◽  
Xuan Wang ◽  
Ping-Lan Yu ◽  
Wei-Feng Sun

Trimethylolpropane triacrylate (TMPTA) as a photoactive crosslinker is grafted onto hydrophobic nanosilica surface through click chemical reactions of mercapto double bonds to prepare the functionalized nanoparticles (TMPTA-s-SiO2), which are used to develop TMPTA-s-SiO2/XLPE nanocomposites with improvements in mechanical strength and electrical resistance. The expedited aging experiments of water-tree growth are performed with a water-knife electrode and analyzed in consistence with the mechanical performances evaluated by means of dynamic thermo-mechanical analysis (DMA) and tensile stress–strain characteristics. Due to the dense cross-linking network of polyethylene molecular chains formed on the TMPTA-modified surfaces of SiO2 nanofillers, TMPTA-s-SiO2 nanofillers are chemically introduced into XLPE matrix to acquire higher crosslinking degree and connection strength in the amorphous regions between polyethylene lamellae, accounting for the higher water-tree resistance and ameliorated mechanical performances, compared with pure XLPE and neat-SiO2/XLPE nanocomposite. Hydrophilic TMPTA molecules grafted on the nano-SiO2 surface can inhibit the condensation of water molecules into water micro-beads at insulation defects, thus attenuating the damage of water micro-beads to polyethylene configurations under alternating electric fields and thus restricting water-tree growth in amorphous regions. The intensified interfaces between TMPTA-s-SiO2 nanofillers and XLPE matrix limit the segment motions of polyethylene molecular chains and resist the diffusion of water molecules in XLPE amorphous regions, which further contributes to the excellent water-tree resistance of TMPTA-s-SiO2/XLPE nanocomposites.


2021 ◽  
Vol 22 (1) ◽  
pp. 394
Author(s):  
Simone Krueger ◽  
Alexander Riess ◽  
Anika Jonitz-Heincke ◽  
Alina Weizel ◽  
Anika Seyfarth ◽  
...  

In cell-based therapies for cartilage lesions, the main problem is still the formation of fibrous cartilage, caused by underlying de-differentiation processes ex vivo. Biophysical stimulation is a promising approach to optimize cell-based procedures and to adapt them more closely to physiological conditions. The occurrence of mechano-electrical transduction phenomena within cartilage tissue is physiological and based on streaming and diffusion potentials. The application of exogenous electric fields can be used to mimic endogenous fields and, thus, support the differentiation of chondrocytes in vitro. For this purpose, we have developed a new device for electrical stimulation of chondrocytes, which operates on the basis of capacitive coupling of alternating electric fields. The reusable and sterilizable stimulation device allows the simultaneous use of 12 cavities with independently applicable fields using only one main supply. The first parameter settings for the stimulation of human non-degenerative chondrocytes, seeded on collagen type I elastin-based scaffolds, were derived from numerical electric field simulations. Our first results suggest that applied alternating electric fields induce chondrogenic re-differentiation at the gene and especially at the protein level of human de-differentiated chondrocytes in a frequency-dependent manner. In future studies, further parameter optimizations will be performed to improve the differentiation capacity of human cartilage cells.


2012 ◽  
Vol 85 (3) ◽  
Author(s):  
Zhong-Qiang Liu ◽  
Guang-Cai Zhang ◽  
Ying-Jun Li ◽  
Su-Rong Jiang

2004 ◽  
Author(s):  
M. Sigurdson ◽  
C. Meinhart ◽  
D. Wang

We develop here tools for speeding up binding in a biosensor device through augmenting diffusive transport, applicable to immunoassays as well as DNA hybridization, and to a variety of formats, from microfluidic to microarray. AC electric fields generate the fluid motion through the well documented but unexploited phenomenon, Electrothermal Flow, where the circulating flow redirects or stirs the fluid, providing more binding opportunities between suspended and wall-immobilized molecules. Numerical simulations predict a factor of up to 8 increase in binding rate for an immunoassay under reasonable conditions. Preliminary experiments show qualitatively higher binding after 15 minutes. In certain applications, dielectrophoretic capture of passing molecules, when combined with electrothermal flow, can increase local analyte concentration and further enhance binding.


2007 ◽  
Vol 29-30 ◽  
pp. 223-226
Author(s):  
Tohru Suzuki ◽  
Tetsuo Uchikoshi ◽  
Koji Morita ◽  
Keijiro Hiraga ◽  
Yoshio Sakka

We have reported that development of texture can be controlled by colloidal processing in a strong magnetic field followed by heating even for diamagnetic ceramics such as alumina, titania and so on. We demonstrate in this study that alumina/alumina laminar composites with different crystalline-oriented layer are produced by electrophoretic deposition (EPD) in a strong magnetic field. This composite was fabricated by alternately changing the angle between the directions of the magnetic and electric fields layer by layer during EPD in 12T. The grains in alternate layers are aligned differently.


2010 ◽  
Vol 27 (4) ◽  
pp. 049901
Author(s):  
Dimitris J Panagopoulos ◽  
Andreas Karabarbounis ◽  
Lukas H Margaritis

MRS Bulletin ◽  
1994 ◽  
Vol 19 (3) ◽  
pp. 29-31 ◽  
Author(s):  
F. Agulló-López

There is a growing demand for nonlinear optical materials for a variety of applications—lasers and coherent sources, electrooptic devices, communication technologies, and optical processors and computers. Nonlinear optics is a vast field requiring materials with diverse performance features. Photorefractive (PR) materials, which experience a change in the refractive index under the effect of inhomogeneous illumination, constitute a relevant branch of the field. They behave as third-order nonlinear materials, which can be considered, in general, as photorefractive. However, the materials more commonly designated as photorefractives involve a charge-transport-induced nonlinearity, and it is these materials which are the object of this issue of the MRS Bulletin.At variance with conventional (often designated as Kerr) nonlinear materials, photorefractives are sensitive not to the local light intensity but to its spatial variation; i.e., they are nonlocal materials. This feature makes them more complicated to deal with than their conventional counterparts, since a χ(3) susceptibility cannot be properly defined (except as a k-dependent function). On the other hand, this sensitivity gives them some unique and interesting features. In particular, an interference light pattern illuminating the crystal and the generated index grating are phase-shifted, leading to remarkable beam coupling and amplification effects. The coupling gain can be markedly enhanced by applying alternating electric fields or by oscillating the interference fringes with a piezoelectric mirror. Efficient image amplifiers have been made using this effect.


Sign in / Sign up

Export Citation Format

Share Document