scholarly journals Synthesis, Physical Properties and Enzymatic Degradation of Biodegradable Nanocomposites Fabricated Using Poly(Butylene Carbonate-Co-Terephthalate) and Organically Modified Layered Zinc Phenylphosphonate

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2149
Author(s):  
Li-Ying Tseng ◽  
Erh-Chiang Chen ◽  
Jie-Mao Wang ◽  
Tzong-Ming Wu

A new biodegradable aliphatic-aromatic poly (butylene carbonate-co-terephthalate) (PBCT-85) with the molar ratio [BC]/[BT] = 85/15, successfully synthesized through transesterification and polycondensation processes, was identified using 1H-NMR spectra. Various weight ratios of PBCT/organically modified layered zinc phenylphosphonate (m-PPZn) nanocomposites were manufactured using the solution mixing process. Wide-angle X-ray diffraction and transmission electron microscopy were used to examine the morphology of PBCT-85/m-PPZn nanocomposites. Both results exhibited that the stacking layers of m-PPZn were intercalated into the PBCT-85 polymer matrix. The additional m-PPZn into PBCT-85 copolymer matrix significantly enhanced the storage modulus at −70 °C, as compared to that of neat PBCT-85. The lipase from Pseudomonas sp. was used to investigate the enzymatic degradation of PBCT-85/m-PPZn nanocomposites. The weight loss decreased as the loading of m-PPZn increased, indicating that the existence of m-PPZn inhibits the degradation of the PBCT-85 copolymers. This result might be attributed to the higher degree of contact angle for PBCT-85/m-PPZn nanocomposites. The PBCT-85/m-PPZn composites approved by MTT assay are appropriate for cell growth and might have potential in the application of biomedical materials.

2019 ◽  
Vol 966 ◽  
pp. 200-203
Author(s):  
Zaenal Arifin ◽  
Triwikantoro ◽  
Bintoro Anang Subagyo ◽  
Mochamad Zainuri ◽  
Darminto

Abstract. In this study, the CaCO3 powder has been successfully synthesized by mixing CaCl2 from natural limestone and Na2CO3 in the same molar ratio. The mixing process of solutions was carried out by employing the molar contents of 0.125, 0.25, 0.375 and 0.5M at varying temperatures of 30, 40, 60 and 80ᴼC. The produced CaCO3 microparticles were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The highest content of aragonite phase with morphology rod-like of the samples is around 29 wt%, resulting from the process using solution of 0.125 M at 80 ᴼC. While at 30 ᴼC and 40 ᴼC produced 100 wt% calcite phase.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Aidong Tang ◽  
Yuehua Deng ◽  
Jiao Jin ◽  
Huaming Yang

A novel nanocomposite ZnFe2O4-TiO2/MCM-41 (ZTM) was synthesized by a sol-gel method and characterized through X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), N2adsorption-desorption, Raman spectroscopy, and ultraviolet visible (UV-vis) spectrophotometry. The results confirmed the incorporation of ZnFe2O4-TiO2nanoparticles inside the pores of the mesoporous MCM-41 host without destroying its integrity. ZnFe2O4nanoparticles can inhibit the transformation of anatase into rutile phase of TiO2. Incorporation of ZnFe2O4-TiO2within MCM-41 avoided the agglomeration of nanoparticles and reduced the band gap energy of TiO2to enhance its visible light photocatalytic activity. UV-vis absorption edges of ZTM nanocomposites redshifted with the increase of Zn/Ti molar ratio. The nanocomposite approach could be a potential choice for enhancing the photoactivity of TiO2, indicating an interesting application in the photodegradation and photoelectric fields.


2007 ◽  
Vol 7 (2) ◽  
pp. 634-640 ◽  
Author(s):  
M. Siliani ◽  
M. A. López-Manchado ◽  
J. L. Valentín ◽  
M. Arroyo ◽  
A. Marcos ◽  
...  

Novel millable polyurethane (PU)/organoclay nanocomposites have been successfully prepared by conventional transformation techniques. One natural (C6A) and two organically modified (C15A and C30B) montmorillonites have been used as clays for preparing PU nanocomposites. The optimum dispersion of nanofiller at a nanometer scale in PU matrix was confirmed by X-ray diffraction patterns and transmission electron microscopy. A substantial improvement of the PU properties by addition of only a small amount of organoclay was observed. It is worthy to note that the organoclays show a different interfacial interaction with the PU matrix, which was reflected in different macroscopic properties. Thus, C30B organoclay seems to react with PU chains to form covalent bonds, while C15Aonly interacts physically with PU chains. Mechanical and barrier properties are analyzed.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Honghui Teng ◽  
Shukun Xu ◽  
Dandan Sun ◽  
Ying Zhang

Fe-doped TiO2nanotubes (Fe-TNTs) have been prepared by ultrasonic-assisted hydrothermal method. The structure and composition of the as-prepared TiO2nanotubes were characterized by transmission electron microscopy, X-ray diffraction, and UV-Visible absorption spectroscopy. Their photocatalytic activities were evaluated by the degradation of MO under visible light. The UV-visible absorption spectra of the Fe-TNT showed a red shift and an enhancement of the absorption in the visible region compared to the pure TNT. The Fe-TNTs were provided with good photocatalytic activities and photostability and under visible light irradiation, and the optimum molar ratio of Ti : Fe was found to be 100 : 1 in our experiments.


2007 ◽  
Vol 124-126 ◽  
pp. 1083-1086
Author(s):  
Jun Hee Sung ◽  
Hyoung Jin Choi

Nanocomposites of conducting polymers of polyaniline (PANI), poly(oethoxyaniline) (PEOA) and polypyrrole (PPy) with clay prepared via either in-situ emulsion polymerization or solvent intercalation were investigated especially for electrorheological fluid (ER) application. Internal structures of these nanocomposites were examined via wide angle X-ray diffraction (WAXD), and transmission electron microscope (TEM). The intercalated nanostructures analyzed via WAXD and TEM were correlated with the electrical property change originated from the nanoscale interaction between clay and conducting polymer. Moreover, their ER behaviors were measured via rotational rheometer with external electric field controller.


2008 ◽  
Vol 8 (4) ◽  
pp. 1858-1866 ◽  
Author(s):  
Pralay Maiti ◽  
Jaya P. Prakash Yadav

Copolymer of hydroxybutyrate and hydroxyvalerate, P(HB-HV)/layered silicate or hydroxyapatite nanocomposites were prepared via melt extrusion. The nanostructure, as observed from wide-angle X-ray diffraction and transmission electron microscopy, indicate intercalated hybrids for layered silicates. Hydroxyapatite of nanometer dimension is uniformly distributed in matrix copolymer. The nanohybrids show significant improvement in thermal and mechanical properties of the copolymer as compared to the neat copolymer. The layered silicate nanocomposites exhibit superior mechanical properties as compared to hydroxyapatite nanohybrid. The thermal expansion coefficient is significantly reduced in nanohybrids. The biodegradability of pure copolymer and its nanocomposites were studied at room temperatures under controlled conditions in compost media. The rate of biodegradation of copolymer is enhanced dramatically in the nanohybrids. Hydroxyapatite hybrid shows highest rate of biodegradation. The change in biodegradation is streamlined in terms of nature of nanoparticles used to prepare hybrids.


2016 ◽  
Vol 34 (3) ◽  
pp. 571-581
Author(s):  
R.B. Pedhekar ◽  
F.C. Raghuwanshi ◽  
V.D. Kapse

AbstractNanocrystalline ZnO-TiO2 (with molar ratios 9:1, 7:3, 1:1, 3:7 and 1:9) were successfully synthesized by hydrothermal method. Synthesized materials were examined with the help of X-ray diffraction and transmission electron microscope. Liquid petroleum gas sensing characteristics of the ZnO-TiO2 films were investigated at different operating temperatures. The ZnO-TiO2 thick film (with 1:1 molar ratio) exhibited good response toward liquid petroleum gas as compared to other investigated compositions. Further, liquid petroleum gas sensing characteristics of CuO modified ZnO-TiO2 thick films were investigated. 0.2 M CuO modified ZnO-TiO2 thick film exhibited excellent liquid petroleum gas sensing characteristics such as higher response (~ 1637.49 at 185 °C) with quick response time (~30 s), low recovery time (~70 s), excellent repeatability and stability at low operating temperature.


2021 ◽  
Author(s):  
Yi-Fang Lee ◽  
Tzong-Ming Wu

Abstract A set of novel biocompatible aliphatic-aromatic nanocomposites, including numerous acrylic acid-grafted poly(butylene carbonate-co-terephthalate) (g-PBCT) and organically-modified layered zinc phenylphosphonate (m-PPZn), were successfully synthesized via polycondensation and transesterification. A primary covalent linkage was produced between the biocompatible polymer and the inorganic reinforcements. Fourier transform infrared spectroscopy and 13C-nuclear magnetic resonance spectra demonstrated the successful grafting of acrylic acid into the PBCT (g-PBCT). Both wide-angle X-ray diffraction data and X-ray photoelectron spectroscopy analysis showed that the g-PBCT polymer matrix was intercalated into the interlayer spacing of the m-PPZn and was chemically interacted with the m-PPZn. The addition of m-PPZn in the g-PBCT matrix significantly improved its storage modulus. A slight increase in thermal stability was observed in all the g-PBCT/m-PPZn composites. Both results are attributed to the presence of covalent bond between g-PBCT and m-PPZn.


2020 ◽  
Vol 01 ◽  
Author(s):  
Huiying Wu ◽  
Feng Liang

Background: Porous Au nanomaterials show great potential in the fields of biomedicine, drug delivery and catalysis for the merits of low density, large void space and large specific surface area. The preparation of porous Au nanomaterials is usually carried out by using a hard-templating method which is cumbersome. Methods: Dandelion-like porous Au nanoparticles were synthesized through a soft-templating method in our work. The synthesized porous Au nanoparticles were characterized via transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX) and cyclic voltammetry (CV). The reduction of nitrophenol was carried out to evaluate the catalytic behavior of porous Au nanoparticles. Results: Porous Au nanoparticles prepared were in uniform size (47.9±6.4 nm) and the morphology could be regulated by adjusting the molar ratio of reactants. The apparent rate constant (kapp) value of reducing nitrophenol catalyzed by porous Au nanoparticles was higher than Au nanospheres and nanobranches in similar size. It could be attributed to the large amount of active sites and high proportion of high-order crystal faces proved by CV and XRD. Conclusion: We developed a facile and reproducible method for synthesizing porous Au nanoparticles. The morphology of porous Au nanoparticles can be ajusted by changing the molar ratio of reactants. Porous Au nanoparticles we prepared behaved better in catalysis compared with Au nanospheres and Au nanobranches.


Clay Minerals ◽  
1991 ◽  
Vol 26 (4) ◽  
pp. 527-534 ◽  
Author(s):  
C. Bender Koch

AbstractThe EDTA-insoluble residues from five samples (two from the oolitic shoal facies and three from the lagoonal facies) of the Late Permian Ca-2 unit (Zechstein) have been investigated by X-ray diffraction, infrared spectroscopy, and scanning and transmission electron microscopy with energy dispersive X-ray analysis (EDXA). The results show that spheres of non-crystalline hydrous feldspathoids (with Al/Si molar ratio between 1·5 and 2·2) dominate the residues of samples from the oolitic shoal facies. Samples from the lagoonal facies are dominated by crystalline material (muscovite and quartz), but two of the samples contain a small number of spheres. Analyses of these samples by selective area diffraction and EDXA revealed the presence of small amounts of non-crystalline hydrous feldspathoids with Al/Si molar ratio between 0·1 and 1·9.


Sign in / Sign up

Export Citation Format

Share Document