scholarly journals Donor-Acceptor Polymer Based on Planar Structure of Alkylidene-Fluorene Derivative: Correlation of Power Conversion Efficiency among Polymer and Various Acceptor Units

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2859
Author(s):  
Eui Jin Lee ◽  
Ho Jun Song

This study synthesized a novel polymer, poly(alkylidene fluorene-alt-diphenylquinoxaline) (PAFDQ), based on a planar alkylidene-fluorene and a highly soluble quinoxaline derivative through the Suzuki coupling reaction. We designed a novel molecular structure based on alkylidene fluorene and quinoxaline derivatives due to compact packing property by the planar structure of alkyidene fluorene and efficient intra-molecular charge transfer by quinoxaline derivatives. The polymer was largely dissolved in organic solvents, with a number average molecular weight and polydispersity index of 13.2 kg/mol and 2.74, respectively. PAFDQ showed higher thermal stability compared with the general fluorene structure owing to its rigid alkylidene-fluorene structure. The highest occupied and lowest unoccupied molecular orbital levels of PAFDQ were −5.37 eV and −3.42 eV, respectively. According to X-ray diffraction measurements, PAFDQ exhibited the formation of an ordered lamellar structure and conventional edge-on π-stacking. The device based on PAFDQ/Y6-BO-4Cl showed the best performance in terms of short circuit current (9.86 mA/cm2), open-circuit voltage (0.76 V), fill factor (44.23%), and power conversion efficiency (3.32%). Moreover, in the PAFDQ/Y6-BO-4Cl-based film, the phase separation of donor-rich and acceptor-rich phases, and the connected dark domains, was observed.

2019 ◽  
Vol 7 (27) ◽  
pp. 16190-16196 ◽  
Author(s):  
Jingnan Wu ◽  
Yuan Meng ◽  
Xia Guo ◽  
Lei Zhu ◽  
Feng Liu ◽  
...  

A new narrow bandgap polymer acceptor (PN1) based on a fused-ring small molecule acceptor as the core building block was designed and developed. The optimal all-polymer solar cell based on the blend of PM6 and PN1 achieved an outstanding power conversion efficiency of 10.5% with a high open-circuit voltage of 1.0 V, a short circuit current density of 15.2 mA cm−2 and a fill factor of 0.69.


2010 ◽  
Vol 93-94 ◽  
pp. 570-573 ◽  
Author(s):  
P. Keeratithivakorn ◽  
B. Tunhoo ◽  
T. Thiwawong ◽  
J. Nukeaw

The organic-inorganic hybrid photovoltaic (PV) cells based on cadmium sulphide (CdS) and cobalt phthalocyanine (CoPc) films have been fabricated and characterized their PV performance. This investigated the effects of the organic and inorganic layer thickness on the photovoltaic properties, these thickness was controlled at various values such as 10, 30 and 50 nm. However, the performance of the hybrid photovoltaic cells was depending on the organic layer thickness. The optimize results of PV cell with CoPc 10 nm and CdS 30 nm showed an open-circuit voltage (Voc) = 0.536 V, a short-circuit current density (Jsc) = 0.1020 mA/cm2, a fill factor FF = 0.281 and a power conversion efficiency (η) = 0.01536 % under the AM1.5 conditions. Efficiency is enhanced by 22 times with the addition of a buffer layer, bathocuproine (BCP) 5 nm, the power conversion efficiency (η) value from 0.01536 to 0.34571%.


1981 ◽  
Vol 59 (6) ◽  
pp. 727-732 ◽  
Author(s):  
Rafik O. Loutfy ◽  
Cheng-Kuo Hsiao

The effect of temperature on the photovoltaic properties of indium/metal-free phthalocyanine Schottky barrier solar cells was investigated in the range 260–350 K. In general, the short circuit photocurrent, Jsc, and fill factor, ff, increased with increasing temperature (in contrast to inorganic photocells). The device series resistance and open circuit photovoltage, Voc, decreased (similar to inorganic photocells) as temperature was raised. An increase in the overall power conversion efficiency, η, has been observed with increase of temperature. In the case of x-H2Pc, the power conversion efficiency increased by 2.5 times due to a temperature rise of 60 °C above ambient. Thus, for operation at temperatures above ambient, organic solar cells may offer a significant advantage over inorganic cells.Analysis of the variation of the photovoltage with temperature showed that the decrease in Voc is mainly due to variation injunction impedance, which is controlled by thermionic current at high temperature and ionized impurity at low temperature.


2020 ◽  
pp. 2150096
Author(s):  
Jing Gao ◽  
Chujian Liao ◽  
Yanqun Guo ◽  
Difan Zhou ◽  
Zhigang Zeng ◽  
...  

The perovskite membrane with large particle size, uniform coverage and high quality is the prerequisite for the preparation of efficient and stable perovskite solar cells. Various additives have been used to increase the grain size and improve the film morphology and crystal quality. In this paper, methylammonium chloride (MACl) was proposed to obtain high crystalline quality of [Formula: see text] perovskite absorption layer. The results show that the adding ammonium methyl chloride into the precursor of tricationic perovskite not only passivates surface defects to form high-quality and large-grain perovskite films, but also facilitates the formation of pure [Formula: see text]-phase [Formula: see text]. Meanwhile, the designed perovskite precursor solutions were used to fabricate mesoporous perovskite solar cells (PSCs). Owing to the perovskite layer consisting of optimized MACl doping, the short-circuit current density [Formula: see text] of PSCs reaches 23.81 mA/cm2, which is 2.73 mA/cm2 higher than the primary [Formula: see text] based on PSCs. The obtained power conversion efficiency (PCE) increases from 13.67% to 17.59%.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Nidal Abu-Zahra ◽  
Mahmoud Algazzar

In this research, n-dodecylthiol was added to P3HT/PC70BM polymer solar cells (PSCs) to improve the crystallinity of P3HT and enhance the phase separation of P3HT/PC70BM. Crystallinity of P3HT:PC70BM doped with 0–5% by volume of n-dodecylthiol was measured using X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques. Both methods showed improvement in crystallinity, which resulted in improving the power conversion efficiency (PCE) of polymer solar cells by 33%. In addition, annealing at 150 °C for 30 min showed further improvement in crystallinity with n-dodecylthiol concentration up to 2%. The highest power conversion efficiency of 3.21% was achieved with polymer crystallites size L of 11.2 nm, after annealing at 150 °C for 30 min under a vacuum atmosphere. The smaller crystallite size suggests a shorter path of the charge carriers between P3HT backbones, which could be beneficial to getting a higher short circuit current in the devices made with the additive. Kinetics study of P3HT:PC70BM crystallinity using Avrami model showed a faster crystallization rate (1/t0.5) at higher temperatures.


2008 ◽  
Vol 8 (9) ◽  
pp. 4761-4766 ◽  
Author(s):  
Dong Wook Kim ◽  
Jin Joo Choi ◽  
Man Ku Kang ◽  
Yongku Kang ◽  
Changjin Lee

We prepared organic sensitizers (S1 and S2) containing julolidine moiety as a donor, phenyl or phenylene thiophene units as a conjugation bridge, and cyano acetic acid as an acceptor for dye sensitized solar cells. S1 exhibited two absorption maxima at 441 nm (ε = 26 200) and 317 nm (ε = 15 500) due to the π–π* transition of the dye molecule. S2 dyes with an additional thiophene unit showed the absorption maximum extended by 18 nm. DSSCs based on S1 dye achieved 2.66% of power conversion efficiency with 8.3 mA cm−2 of short circuit current, 576 mV of open circuit voltage, and 0.56 of fill factor. DSSCs using S2 dye with a longer conjugation attained only 1.48% of power conversion efficiency. The 0.21 V lower driving force for regeneration of the S2 dye compared to the S1 dye is one of the reasons for low conversion efficiency of the S2 dye.


2009 ◽  
Vol 1212 ◽  
Author(s):  
Nikhil T Satyala ◽  
Wudyalew T Wondmagegn ◽  
Ron J Pieper ◽  
Michael R Korn

AbstractA two-dimensional finite element simulation model for the bi-layer heterostructure organic photovoltaic (PV) cell, based on copper phthalocyanine (CuPc) and fullerene (C60) in the presence and absence of electron transport layers (ETLs) is presented. The effect of bathocuproine (BCP), tris(8-hydroxyquinolinato)aluminum (Alq3), and copper phthalocyanine (CuPc) as ETLs on short-circuit current (Jsc), open-circuit voltage (Voc), and power conversion efficiency (PCE) is investigated. The Frenkel-Poole mobility model was employed in describing the conduction mechanisms in the active layers. Singlet exciton and Langevin recombination techniques were employed to describe excitonic generation and recombination, respectively. The obtained simulation results demonstrate that the efficiency of PV cells is primarily dependent on the short-circuit current, the absorption capability of the active layers, and the charge collection efficiency at the electrodes. In addition, significant reduction in power conversion efficiency is observed with increasing thickness of the ETL layer. From among the modeled device designs, PV cells containing a 50Å BCP layer result in the best power conversion efficiencies of 2.05%.


2014 ◽  
Vol 2 (43) ◽  
pp. 9303-9310 ◽  
Author(s):  
Yupei Zhang ◽  
Jingyu Hao ◽  
Xue Li ◽  
Shufen Chen ◽  
Lianhui Wang ◽  
...  

Mixed Au nanoparticles (NPs) with wide absorption spectra of 300–1000 nm and three absorption peaks of 520, 600, and 770 nm are assembled onto the ITO anode in polymer solar cells to significantly improve the power conversion efficiency and short-circuit current by factors of 24.2% and 18.6%.


Sign in / Sign up

Export Citation Format

Share Document