scholarly journals On the Heuristic Procedure to Determine Processing Parameters in Additive Manufacturing Based on Materials Extrusion

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3009
Author(s):  
Georgijs Bakradze ◽  
Egīls Arājs ◽  
Sergejs Gaidukovs ◽  
Vijay Kumar Thakur

We present a heuristic procedure for determining key processing parameters (PPs) in materials-extrusion-based additive manufacturing processes. The concept relies on a design-of-experiment approach and consists of eleven “test objects” to determine the optimal combinations of key PPs values, starting with the PPs for printing the first layer and progressing to more complex geometric features, e.g., “bridges”. In each of the test objects, several combinations of the known PPs’ values are used, and only the values resulting in the best printed-part quality are selected for the following tests. The concept is intrinsically insensitive to different artefacts of the additive manufacturing machine (e.g., discrepancies between the nominal and actual nozzle diameters, and improper calibration of the feeding screws) and the optimal values of key PPs for manufacturing defect-free parts under the actual processing conditions can be determined. We validated the proposed procedure for two common commercial polymer feedstock materials, and we show that, by using the proposed procedure, it is possible to reduce the optimization time down to several hours, as well as to reduce the amount of consumed feedstock material. Tensile tests revealed a strong effect of amorphous and semi-crystalline nature of the polymer on the results of optimization. To the best of our knowledge, this is the first attempt to describe a systematic approach for optimizing PPs for materials extrusion-based additive manufacturing processes without relying on statistical data analysis or virtual simulations. The concept was implemented as a web-tool 3DOptimizer®.

2020 ◽  
Vol 321 ◽  
pp. 03014
Author(s):  
Dmytro Kovalchuk ◽  
Orest Ivasishin ◽  
Dmytro Savvakin

Ti-6Al-4V articles were produced with advanced additive manufacturing technology of Direct Energy Deposition (DED) type using profile electron beam and wire as feedstock material. The key distinctive feature of this additive manufacturing process is the applying of the hollow conical electron beam generated by low-voltage (<20kV) gas-discharge EB gun for heating and melting of the substrate and co-axially fed wire. Such configuration ensures precisely controllable liquid metal transfer from the wire end to the substrate, specific temperature gradients at the fusion area and heat flow from liquid metal pool. Such conditions of heating, melting and cooling during 3D manufacturing processing provide the ability for controllable microstructure formation, including grain size and material texture. Influence of processing parameters and cooling conditions on crystallization, grain formation and intragrain structure of solidified material is discussed. Optimization of processing parameters allowed production of 3D Ti-6Al- 4V articles with isotropic microstructure and mechanical properties which met standard requirements for Ti-6Al-4V alloy.


2021 ◽  
Vol 33 (2) ◽  
Author(s):  
B. Reitz ◽  
C. Lotz ◽  
N. Gerdes ◽  
S. Linke ◽  
E. Olsen ◽  
...  

AbstractMankind is setting to colonize space, for which the manufacturing of habitats, tools, spare parts and other infrastructure is required. Commercial manufacturing processes are already well engineered under standard conditions on Earth, which means under Earth’s gravity and atmosphere. Based on the literature review, additive manufacturing under lunar and other space gravitational conditions have only been researched to a very limited extent. Especially, additive manufacturing offers many advantages, as it can produce complex structures while saving resources. The materials used do not have to be taken along on the mission, they can even be mined and processed on-site. The Einstein-Elevator offers a unique test environment for experiments under different gravitational conditions. Laser experiments on selectively melting regolith simulant are successfully conducted under lunar gravity and microgravity. The created samples are characterized in terms of their geometry, mass and porosity. These experiments are the first additive manufacturing tests under lunar gravity worldwide.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1951
Author(s):  
Yi Di Boon ◽  
Sunil Chandrakant Joshi ◽  
Somen Kumar Bhudolia

Fiber reinforced thermoplastic composites are gaining popularity in many industries due to their short consolidation cycles, among other advantages over thermoset-based composites. Computer aided manufacturing processes, such as filament winding and automated fiber placement, have been used conventionally for thermoset-based composites. The automated processes can be adapted to include in situ consolidation for the fabrication of thermoplastic-based composites. In this paper, a detailed literature review on the factors affecting the in situ consolidation process is presented. The models used to study the various aspects of the in situ consolidation process are discussed. The processing parameters that gave good consolidation results in past studies are compiled and highlighted. The parameters can be used as reference points for future studies to further improve the automated manufacturing processes.


2021 ◽  
Vol 58 (1) ◽  
pp. 4-31
Author(s):  
C. Fleißner-Rieger ◽  
T. Pogrielz ◽  
D. Obersteiner ◽  
T. Pfeifer ◽  
H. Clemens ◽  
...  

Abstract Additive manufacturing processes allow the production of geometrically complex lightweight structures with specific material properties. However, by contrast with ingot metallurgy methods, the manufacture of components using this process also brings about some challenges. In the field of microstructural characterization, where mostly very fine structures are analyzed, it is thus indispensable to optimize the classic sample preparation process and to furthermore implement additional preparation steps. This work focuses on the metallography of additively manufactured Ti‑6Al‑4V components produced in a selective laser melting process. It offers a guideline for the metallographic preparation along the process chain of additive manufacturing from the metal powder characterization to the macro- and microstructural analysis of the laser melted sample. Apart from developing preparation parameters, selected etching methods were examined with regard to their practicality.


2019 ◽  
Vol 3 (2) ◽  
pp. 35 ◽  
Author(s):  
Miguel Reis Silva ◽  
António M. Pereira ◽  
Nuno Alves ◽  
Gonçalo Mateus ◽  
Artur Mateus ◽  
...  

This work presents an innovative system that allows the oriented deposition of continuous fibers or long fibers, pre-impregnated or not, in a thermoplastic matrix. This system is used in an integrated way with the filamentary fusion additive manufacturing technology and allows a localized and oriented reinforcement of polymer components for advanced engineering applications at a low cost. To demonstrate the capabilities of the developed system, composite components of thermoplastic matrix (polyamide) reinforced with pre-impregnated long carbon fiber (carbon + polyamide), 1 K and 3 K, were processed and their tensile and flexural strength evaluated. It was demonstrated that the tensile strength value depends on the density of carbon fibers present in the composite, and that with the passage of 2 to 4 layers of fibers, an increase in breaking strength was obtained of about 366% and 325% for the 3 K and 1 K yarns, respectively. The increase of the fiber yarn diameter leads to higher values of tensile strength of the composite. The obtained standard deviation reveals that the deposition process gives rise to components with anisotropic mechanical properties and the need to optimize the processing parameters, especially those that lead to an increase in adhesion between deposited layers.


Author(s):  
Junjie Luo ◽  
Heng Pan ◽  
Edward C. Kinzel

Selective laser melting (SLM) is a technique for the additive manufacturing (AM) of metals, plastics, and even ceramics. This paper explores using SLM for depositing glass structures. A CO2 laser is used to locally melt portions of a powder bed to study the effects of process parameters on stationary particle formation as well as continuous line quality. Numerical modeling is also applied to gain insight into the physical process. The experimental and numerical results indicate that the absorptivity of the glass powder is nearly constant with respect to the processing parameters. These results are used to deposit layered single-track wide walls to demonstrate the potential of using the SLM process for building transparent parts. Finally, the powder bed process is compared to a wire-fed approach. AM of glass is relevant for gradient index optics, systems with embedded optics, and the formation of hermetic seals.


Sign in / Sign up

Export Citation Format

Share Document