scholarly journals Vapor Sublimation and Deposition to Fabricate a Porous Methyl Propiolate-Functionalized Poly-p-xylylene Material for Copper-Free Click Chemistry

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 786
Author(s):  
Chin-Yun Lee ◽  
Shu-Man Hu ◽  
Jia-Qi Xiao ◽  
Yu-Ming Chang ◽  
Tatsuya Kusanagi ◽  
...  

Conventional porous materials are mostly synthesized in solution-based methods involving solvents and initiators, and the functionalization of these porous materials usually requires additional and complex steps. In the current study, a methyl propiolate-functionalized porous poly-p-xylylene material was fabricated based on a unique vapor sublimation and deposition process. The process used a water solution and ice as the template with a customizable shape and dimensions, and the conventional chemical vapor deposition (CVD) polymerization of poly-p-xylylene on such an ice template formed a three-dimensional, porous poly-p-xylylene material with interconnected porous structures. More importantly, the functionality of methyl propiolate was well preserved by using methyl propiolate-substituted [2,2]-paracyclophane during the vapor deposition polymerization process and was installed in one step on the final porous poly-p-xylylene products. This functionality exhibited an intact structure and reactivity during the proposed vapor sublimation and deposition process and was proven to have no decomposition or side products after further characterization and conjugation experiments. The electron-withdrawing methyl propiolate group readily provided efficient alkynes as click azide-terminated molecules under copper-free and mild conditions at room temperature and in environmentally friendly solvents, such as water. The resulting methyl propiolate-functionalized porous poly-p-xylylene exhibited interface properties with clickable specific covalent attachment toward azide-terminated target molecules, which are widely available for drugs and biomolecules. The fabricated functional porous materials represent an advanced material featuring porous structures, a straightforward synthetic approach, and precise and controlled interface click chemistry, rendering long-term stability and efficacy to conjugate target functionalities that are expected to attract a variety of new applications.

Author(s):  
D.W. Susnitzky ◽  
S.R. Summerfelt ◽  
C.B. Carter

Solid-state reactions have traditionally been studied in the form of diffusion couples. This ‘bulk’ approach has been modified, for the specific case of the reaction between NiO and Al2O3, by growing NiAl2O4 (spinel) from electron-transparent Al2O3 TEM foils which had been exposed to NiO vapor at 1415°C. This latter ‘thin-film’ approach has been used to characterize the initial stage of spinel formation and to produce clean phase boundaries since further TEM preparation is not required after the reaction is completed. The present study demonstrates that chemical-vapor deposition (CVD) can be used to deposit NiO particles, with controlled size and spatial distributions, onto Al2O3 TEM specimens. Chemical reactions do not occur during the deposition process, since CVD is a relatively low-temperature technique, and thus the NiO-Al2O3 interface can be characterized. Moreover, a series of annealing treatments can be performed on the same sample which allows both Ni0-NiAl2O4 and NiAl2O4-Al2O3 interfaces to be characterized and which therefore makes this technique amenable to kinetics studies of thin-film reactions.


2000 ◽  
Vol 15 (8) ◽  
pp. 1702-1708
Author(s):  
Ruichao Zhang ◽  
Ren Xu

A novel two-step metalorganic chemical vapor deposition process was used in this study to prepare Sr1−xBaxNb2O6 (SBN) thin films. Two thin layers of single-phase SrNb2O6 and BaNb2O6 were deposited alternately on a silicon substrate, and the solid solution of SBN was obtained by high-temperature annealing. The stoichiometry control of the SrNb2O6 and the BaNb2O6 thin films was achieved through deposition process control, according to the evaporation characteristics of double metal alkoxide. The evaporation behavior of double metal alkoxide precursors SrNb2(1-OC4H9)12 and BaNb2(1-OC4H9)12 was studied, and the results were compared with the evaporation of single alkoxide Nb(1-OC4H9)5.


2012 ◽  
Vol 1 (1) ◽  
pp. 46 ◽  
Author(s):  
Amir Mahyar Khorasani ◽  
Mohammad Reza Solymany yazdi ◽  
Mehdi Faraji ◽  
Alex Kootsookos

Thin-film coating plays a prominent role on the manufacture of many industrial devices. Coating can increase material performance due to the deposition process. Having adequate and precise model that can predict the hardness of PVD and CVD processes is so helpful for manufacturers and engineers to choose suitable parameters in order to obtain the best hardness and decreasing cost and time of industrial productions. This paper proposes the estimation of hardness of titanium thin-film layers as protective industrial tools by using multi-layer perceptron (MLP) neural network. Based on the experimental data that was obtained during the process of chemical vapor deposition (CVD) and physical vapor deposition (PVD), the modeling of the coating variables for predicting hardness of titanium thin-film layers, is performed. Then, the obtained results are experimentally verified and very accurate outcomes had been attained.


Sign in / Sign up

Export Citation Format

Share Document