scholarly journals Integrated Conductive Hybrid Electrode Materials Based on PPy@ZIF-67-Derived Oxyhydroxide@CFs Composites for Energy Storage

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1082
Author(s):  
Shuaishuai Yang ◽  
Xianhui An ◽  
Xueren Qian

Due to excellent flexibility and hydrophilicity, cellulose fibers (CFs) have become one of the most potential substrate materials in flexible and wearable electronics. In previous work, we prepared cobalt oxyhydroxide with crystal defects modified polypyrrole (PPy)@CFs composites with good electrochemical performance. In this work, we redesigned the crystalline and nanoscale cobalt oxyhydroxide with zeolitic imidazolate frameworks-67 (ZIF-67) as precursor. The results showed that the PPy@ZIF-67 derived cobalt oxyhydroxide@CFs (PZCC) hybrid electrode materials possess far better capacitance of 696.65 F·g−1 than those of PPy@CFs (308.75 F·g−1) and previous PPy@cobalt oxyhydroxide@CFs (571.3 F·g−1) at a current density of 0.2 A·g−1. The PZCC delivers an excellent cyclic stability (capacitance retention of 92.56%). Moreover, the PZCC-supercapacitors (SCs) can provide an energy density of 45.51 mWh cm−3 at a power density of 174.67 mWh·cm−3, suggesting the potential application in energy storage area.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2325
Author(s):  
Ronan Invernizzi ◽  
Liliane Guerlou-Demourgues ◽  
François Weill ◽  
Alexia Lemoine ◽  
Marie-Anne Dourges ◽  
...  

Nanostructuration is one of the most promising strategies to develop performant electrode materials for energy storage devices, such as hybrid supercapacitors. In this work, we studied the influence of precipitation medium and the use of a series of 1-alkyl-3-methylimidazolium bromide ionic liquids for the nanostructuration of β(III) cobalt oxyhydroxides. Then, the effect of the nanostructuration and the impact of the different ionic liquids used during synthesis were investigated in terms of energy storage performances. First, we demonstrated that forward precipitation, in a cobalt-rich medium, leads to smaller particles with higher specific surface areas (SSA) and an enhanced mesoporosity. Introduction of ionic liquids (ILs) in the precipitation medium further strongly increased the specific surface area and the mesoporosity to achieve well-nanostructured materials with a very high SSA of 265 m2/g and porosity of 0.43 cm3/g. Additionally, we showed that ILs used as surfactant and template also functionalize the nanomaterial surface, leading to a beneficial synergy between the highly ionic conductive IL and the cobalt oxyhydroxide, which lowers the resistance charge transfer and improves the specific capacity. The nature of the ionic liquid had an important influence on the final electrochemical properties and the best performances were reached with the ionic liquid containing the longest alkyl chain.


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 788
Author(s):  
Xin Guan ◽  
Lujun Pan ◽  
Zeng Fan

Lightweight energy storage devices with high mechanical flexibility, superior electrochemical properties and good optical transparency are highly desired for next-generation smart wearable electronics. The development of high-performance flexible and transparent electrodes for supercapacitor applications is thus attracting great attention. In this work, we successfully developed flexible, transparent and highly conductive film electrodes based on a conducting polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The PEDOT:PSS film electrodes were prepared via a simple spin-coating approach followed by a post-treatment with a salt solution. After treatment, the film electrodes achieved a high areal specific capacitance (3.92 mF/cm2 at 1 mA/cm2) and long cycling lifetime (capacitance retention >90% after 3000 cycles) with high transmittance (>60% at 550 nm). Owing to their good optoelectronic and electrochemical properties, the as-assembled all-solid-state device for which the PEDOT:PSS film electrodes were utilized as both the active electrode materials and current collectors also exhibited superior energy storage performance over other PEDOT-based flexible and transparent symmetric supercapacitors in the literature. This work provides an effective approach for producing high-performance, flexible and transparent polymer electrodes for supercapacitor applications. The as-obtained polymer film electrodes can also be highly promising for future flexible transparent portable electronics.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2883 ◽  
Author(s):  
Bushra Begum ◽  
Salma Bilal ◽  
Anwar ul Haq Ali Shah ◽  
Philipp Röse

Polybenzopyrrole (Pbp) is an emerging candidate for electrochemical energy conversion and storage. There is a need to develop synthesis strategies for this class of polymers that can help improve its overall properties and make it as suitable for energy storage applications as other well-studied polymers in this substance class, such as polyaniline and polypyrrole. In this study, by synthesizing Pbp in surfactant-supported acidic medium, we were able to show that the physicochemical and electrochemical properties of Pbp-based electrodes are strongly influenced by the respective polymerization conditions. Through appropriate optimization of various reaction parameters, a significant enhancement of the thermal stability (up to 549.9 °C) and the electrochemical properties could be achieved. A maximum specific capacitance of 166.0 ± 2.0 F g−1 with an excellent cycle stability of 87% after 5000 cycles at a current density of 1 A g−1 was achieved. In addition, a particularly high-power density of 2.75 kW kg−1 was obtained for this polybenzopyrrole, having a gravimetric energy density of 17 Wh kg−1. The results show that polybenzopyrroles are suitable candidates to compete with other conducting polymers as electrode materials for next-generation Faradaic supercapacitors. In addition, the results of the current study can also be easily applied to other systems and used for adaptations or new syntheses of advanced hybrid/composite Pbp-based electrode materials.


2021 ◽  
Author(s):  
Mirai Ohara ◽  
A. Shahul Hameed ◽  
Kei Kubota ◽  
Akihiro Katogi ◽  
Kuniko Chihara ◽  
...  

K-ion batteries (KIBs) are promising for large-scale electrical energy storage owing to the abundant resources and the electrochemical specificity of potassium. Among the positive electrode materials for KIBs, vanadium-based polyanionic...


Author(s):  
Tingting Xia ◽  
Chengfei Xu ◽  
Pengfei Dai ◽  
Xiaoyun Li ◽  
Riming Lin ◽  
...  

Three-dimensional (3D) conductive polymers are promising conductive matrices for electrode materials toward electrochemical energy storage. However, their fragile nature and weak binding forces with active materials could not guarantee long-term...


2021 ◽  
Vol 9 (13) ◽  
pp. 8099-8128
Author(s):  
Xinyu Zhang ◽  
Changzhong Jiang ◽  
Jing Liang ◽  
Wei Wu

Efficient strategies of electrode materials and the device architecture for wearable flexible supercapacitors have been systematically summarized.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 631
Author(s):  
Aleksander Cholewinski ◽  
Pengxiang Si ◽  
Marianna Uceda ◽  
Michael Pope ◽  
Boxin Zhao

Binders play an important role in electrode processing for energy storage systems. While conventional binders often require hazardous and costly organic solvents, there has been increasing development toward greener and less expensive binders, with a focus on those that can be processed in aqueous conditions. Due to their functional groups, many of these aqueous binders offer further beneficial properties, such as higher adhesion to withstand the large volume changes of several high-capacity electrode materials. In this review, we first discuss the roles of binders in the construction of electrodes, particularly for energy storage systems, summarize typical binder characterization techniques, and then highlight the recent advances on aqueous binder systems, aiming to provide a stepping stone for the development of polymer binders with better sustainability and improved functionalities.


Author(s):  
Yaning Gao ◽  
Haoyi Yang ◽  
Ying Bai ◽  
Chuan Wu

Aqueous rechargeable metal ion batteries (ARMBs), featuring safety, facile manufacturing and environmental benignity, have recently attracted extensive attention as promising energy storage systems. Particularly, pursuit of electrode materials with abundance,...


2021 ◽  
Vol 5 (5) ◽  
pp. 129
Author(s):  
Yapeng Wang ◽  
Yanxiang Wang ◽  
Chengjuan Wang ◽  
Yongbo Wang

As one of the most outstanding high-efficiency and environmentally friendly energy storage devices, the supercapacitor has received extensive attention across the world. As a member of transition metal oxides widely used in electrode materials, manganese dioxide (MnO2) has a huge development potential due to its excellent theoretical capacitance value and large electrochemical window. In this paper, MnO2 was prepared at different temperatures by a liquid phase precipitation method, and polyaniline/manganese dioxide (PANI/MnO2) composite materials were further prepared in a MnO2 suspension. MnO2 and PANI/MnO2 synthesized at a temperature of 40 °C exhibit the best electrochemical performance. The specific capacitance of the sample MnO2-40 is 254.9 F/g at a scanning speed of 5 mV/s and the specific capacitance is 241.6 F/g at a current density of 1 A/g. The specific capacitance value of the sample PANI/MnO2-40 is 323.7 F/g at a scanning speed of 5 mV/s, and the specific capacitance is 291.7 F/g at a current density of 1 A/g, and both of them are higher than the specific capacitance value of MnO2. This is because the δ-MnO2 synthesized at 40 °C has a layered structure, which has a large specific surface area and can accommodate enough electrolyte ions to participate the electrochemical reaction, thus providing sufficient specific capacitance.


Sign in / Sign up

Export Citation Format

Share Document