scholarly journals Synthesis of Optically Tunable and Thermally Stable PMMA–PVA/CuO NPs Hybrid Nanocomposite Thin Films

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1715
Author(s):  
Ahmad M. Alsaad ◽  
Ahmad A. Ahmad ◽  
Issam A. Qattan ◽  
Abdul-Raouf El-Ali ◽  
Shatha A. Al Fawares ◽  
...  

We report the synthesis and comprehensive characterization of polymethylmethacrylate (PMMA)/polyvinylalcohol (PVA) polymeric blend doped with different concentrations of Copper oxide (CuO) nanoparticles (NPs). The PMMA–PVA/CuO nanocomposite hybrid thin films containing wt.% = 0%, 2%, 4%, 8%, and 16% of CuO NPs are deposited on glass substrates via dip-coating technique. Key optical parameters are measured, analyzed, and interpreted. Tauc, Urbach, Spitzer–Fan, and Drude models are employed to calculate the optical bandgap energy (Eg) and the optoelectronic parameters of PMMA–PVA/CuO nanocomposites. The refractive index and Eg of undoped PMMA–PVA are found to be (1.5–1.85) and 4.101 eV, respectively. Incorporation of specific concentrations of CuO NPs into PMMA–PVA blend leads to a considerable decrease in Eg and to an increase of the refractive index. Moreover, Fourier Transform Infrared Spectroscopy (FTIR) transmittance spectra are measured and analyzed for undoped and doped polymeric thin films to pinpoint the major vibrational modes in the spectral range (500 and 4000 cm−1) as well as to elucidate the nature of chemical network bonding. Thermogravimetric analysis (TGA) is conducted under appropriate conditions to ensure the thermal stability of thin films. Doped polymeric thin films are found to be thermally stable below 105 °C. Therefore, controlled tuning of optoelectronic and thermal properties of doped polymeric thin films by introducing an appropriate concentration of inorganic fillers leads to a smart design of scaled multifunctional devices.

2013 ◽  
Vol 334-335 ◽  
pp. 290-293 ◽  
Author(s):  
N. Baydogan ◽  
T. Ozdurmusoglu ◽  
Huseyin Cimenoglu ◽  
A.B. Tugrul

Doped ZnO:Al thin films were deposited on glass substrates by the solgel dip technique. Optical parameters such as the refractive index and the extinction coefficient tend to change with increasing annealing temperature.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 99
Author(s):  
Ahmad Alsaad ◽  
Abdul Raouf Al Dairy ◽  
Ahmad Ahmad ◽  
Issam A. Qattan ◽  
Shatha Al Fawares ◽  
...  

We report the synthesis of hybrid thin films based on Poly(MethylMethAcrylate) (PMMA) and Poly(VinylAlcohol) (PVA), doped with different concentrations of titanium dioxide nanoparticles (TiO2 NPs). As-prepared thin films of (PMMA-PVA) doped by TiO2 NPs (wt.% = 2%, 4%, 8%, and 16%) are deposited on glass substrate. Transmittance (T%), reflectance (R%), absorption coefficient (α), optical constants (n and k), and optical dielectric functions (ε1 and ε2) are deduced using the experimental transmittance and reflectance spectra. Furthermore, a combination of classical models such as Tauc, Urbach, Spitzer-Fan, and Drude models are applied to calculate the optical and optoelectronic parameters and the energy gaps of the prepared nanocomposite thin films. The optical bandgap energy of PMMA-PVA thin film is found to be 4.101 eV. Incorporation of TiO2 NPs into PMMA-PVA polymeric thin films leads to a decrease in the optical bandgap and thus bandgap engineering is possible. Fourier-transform infrared spectroscopy (FTIR) transmittance spectra of thin films are measured and interpreted to identify the vibrational modes. To elucidate the chemical stability, thermogravimetric (TGA) curves are measured. We found that (PMMA-PVA)/TiO2 NPs polymeric thin films are thermally stable below 110 °C enable them to be attractive for a wide range of optical and optoelectronic applications.


Author(s):  
Ahmad Alsaad ◽  
Ahmad Ahmad ◽  
Abdul Raouf Al Dairy ◽  
Issam A. Qattan ◽  
Shatha Al Fawares ◽  
...  

We report the synthesis and characterization of Poly Methyl-Meth-Acrylate (PMMA)/Poly vinylalcohol (PVA) polymeric blend doped with different concentrations of Copper oxide (CuO) nanoparticles (NPs). The (PMMA-PVA)/CuO nanocomposite hybrid thin films (wt. % = 0%, 2%, 4%, 8%, and 16%) of CuO NPs are deposited on glass substrates via dip-coating technique. The transmittance (T%), reflectance (R%), the absorption coefficient (α), the optical constants [refractive index (n), extinction coefficient (k)], optical dielectric functions [ɛ',ɛ''] are investigated and interpreted. Tauc, Urbach, Spitzer-Fan, and Drude models are employed to calculate the optical bandgap energy (Eg) and the optoelectronic parameters of the nanocomposite thin films. The refractive index and optical bandgap energy of of (PMMA-PVA) polymeric thin film are found to be (1.5 to 1.85) and 4.101 eV, respectively. Incorporation of specific concentrations of CuO-NPs in (PMMA-PVA) polymeric thin films leads to a noticeable decrease in the optical bandgap energy and to an increase of the refractive index. Moreover, Fourier Transform Infrared Spectroscopy (FTIR) transmittance spectra are measured and analyzed for undoped and doped polymeric thin films to pinpoint the major vibrational modes in the spectral range (500 and 4000 cm-1), as well as, the nature of network bonding in both systems. Thermal stability of thin films is investigated by performing thermogravimetric analysis (TGA). The TGA thermograms confirm that both doped polymeric thin films are thermally stable at temperatures below 110°C which enables them to be attractive for a wide range of optical and optoelectronic applications. Our results indicate that optical, vibrational and thermal properties of both polymeric thin films can be tuned for specific applications by the appropriate corporation of particular concentrations of CuO-NPs.


2015 ◽  
Vol 723 ◽  
pp. 528-531
Author(s):  
Jun Wang ◽  
Ling Yun Bai

TiO2 thin films were prepared on glass substrates by sol-gel method. The effect of withdraw speed on the thickness and optical properties of TiO2 thin films was investigated. The films were transparent in the visible wavelength. The thickness of the TiO2 films was increased from 90 nm for the withdraw speed of 1000 μm/s to 160 nm for the withdraw speed of 2000 μm/s. While, The refractive index of the TiO2 thin film decreased from 2.38 to 2.07. It may be due to the porosity of the film was increased. The optical band-gap of the films was around 3.45 eV.


2019 ◽  
Vol 26 (01) ◽  
pp. 1850134 ◽  
Author(s):  
CHERIFA DALACHE ◽  
HADJ BENHEBAL ◽  
BEDHIAF BENRABAH ◽  
AEK AMMARI ◽  
ABDELMALEK KHARROUBI ◽  
...  

This paper contains the results of the structural and spectroscopic characterizations of undoped and Cadmium-doped cobalt oxide thin films with different Co/Cd molar ratios (3%, 5%, 7% and 9%). The nanosized undoped and cadmium-doped Co3O4 thin layers were prepared using sol–gel process and deposited on glass substrates by dip coating. The changes caused by the incorporation of cadmium at different levels of doping have been highlighted by the techniques UV–Visible (UV–Vis) spectroscopy, Infrared (IR) spectroscopy, X-ray diffraction (XRD) measurements, SEM coupled EDX and impedance spectroscopy. From the UV–Vis spectroscopy analysis, it was found that all the films are two direct bandgap energies. The optical transmittance and the bandgap energy decrease with increase in Cd concentration. The XRD spectra confirm the films were polycrystalline with a cubic spinel structure. The results of the impedance spectroscopy show that the equivalent circuit of the synthesized samples is an RC parallel circuit.


2021 ◽  
Author(s):  
I M El radaf ◽  
H.Y.S Al-Zahrani

Abstract In this research work, thin films of BiSbS3 have been successfully synthesized onto well cleaned soda-lima glass substrates via the chemical bath deposition procedure at different thicknesses (t= 159, 243, 296 and 362 nm). The X-ray diffraction patterns of the chemically deposited BiSbS3 films depicted that the synthesized films exposed polycrystalline nature and have an orthorhombic structure. The structural parameters of the chemically deposited BiSbS3 films were evaluated by Debye-Scherer’s formulas. The surface morphologies of the BiSbS3 films were fixed via the field-emission-scanning-electron microscope. The analyses of the linear optical parameters of the chemically deposited BiSbS3 thin films refer to improving the values of the absorption coefficient, α and the linear refractive index, n via the increase in the film thickness. In addition, there is an observed reduction in the energy gap, Eg values from 1.38 to 1.22 eV occurred by raising the film thickness. Furthermore, there is an enhancement in the nonlinear optical constants and the optoelectrical parameters occurred by raising the film thickness where the nonlinear refractive index, \({n}_{2},\)the optical free carrier concentration, \({N}_{opt}\) and the optical conductivity σopt were enlarged with increasing the values of film thickness. Moreover, the hot probe procedure was applied to the BiSbS3 thin films and this method demonstrated that the chemically deposited BiSbS3 films are p-type semiconductors.


2018 ◽  
Vol 5 (2) ◽  
pp. 16-18
Author(s):  
Chandar Shekar B ◽  
Ranjit Kumar R ◽  
Dinesh K.P.B ◽  
Sulana Sundar C ◽  
Sunnitha S ◽  
...  

Thin films of poly vinyl alcohol (PVA) were prepared on pre-cleaned glass substrates by Dip Coating Method. FTIR spectrum was used to identify the functional groups present in the prepared films. The vibrational peaks observed at 1260 cm-1 and 851 cm-1 are assigned to C–C stretching and CH rocking of PVA.The characteristic band appearing at 1432 cm-1 is assigned to C–H bend of CH2 of PVA. The thickness of the prepared thin films were measured by using an electronic thickness measuring instrument (Tesatronic-TTD20) and cross checked by gravimetric method. XRD spectra indicated the amorphous nature of the films.Surface morphology of the coated films was studied by scanning electron microscope (SEM). The surface revealed no pits and pin holes on the surface. The observed surface morphology indicated that these films could be used as dielectric layer in organic thin film transistors and as drug delivery system for wound healing.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1648
Author(s):  
Muaffaq M. Nofal ◽  
Shujahadeen B. Aziz ◽  
Jihad M. Hadi ◽  
Wrya O. Karim ◽  
Elham M. A. Dannoun ◽  
...  

In this work, a green approach was implemented to prepare polymer composites using polyvinyl alcohol polymer and the extract of black tea leaves (polyphenols) in a complex form with Co2+ ions. A range of techniques was used to characterize the Co2+ complex and polymer composite, such as Ultraviolet–visible (UV-Visible) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The optical parameters of absorption edge, refractive index (n), dielectric properties including real and imaginary parts (εr, and εi) were also investigated. The FRIR and XRD spectra were used to examine the compatibility between the PVA polymer and Co2+-polyphenol complex. The extent of interaction was evidenced from the shifts and change in the intensity of the peaks. The relatively wide amorphous phase in PVA polymer increased upon insertion of the Co2+-polyphenol complex. The amorphous character of the Co2+ complex was emphasized with the appearance of a hump in the XRD pattern. From UV-Visible spectroscopy, the optical properties, such as absorption edge, refractive index (n), (εr), (εi), and bandgap energy (Eg) of parent PVA and composite films were specified. The Eg of PVA was lowered from 5.8 to 1.82 eV upon addition of 45 mL of Co2+-polyphenol complex. The N/m* was calculated from the optical dielectric function. Ultimately, various types of electronic transitions within the polymer composites were specified using Tauc’s method. The direct bandgap (DBG) treatment of polymer composites with a developed amorphous phase is fundamental for commercialization in optoelectronic devices.


1992 ◽  
Vol 271 ◽  
Author(s):  
Shoji Kaneko ◽  
Naoto Mazuka ◽  
Tamotsu Yamada

ABSTRACTMn-Co-Ni-O thin films of metal atomic ratio 3.0 : 1.9 : 1.0 were prepared on glass substrates from methanol solutions of the corresponding metal β-diketonates by dip-coating. As-prepared films were heated at 900°C for 1 h mostly after being calcined at 450°C for 5 min. The film thickness increased with increasing concentration of the solution as well as the number of lifting times. However, the effect was not apparent with the sample prepared without calcination. The prepared films were observed to crystallize into a complicated spinel phase by the heating process at 900°C for 1 h. The surface of the dense film composed of particles of about 0.2 μm diameter, was almost even. The thermal and aging responses of electric resistance showed the film to be a good material as a thermistor.


2013 ◽  
Vol 665 ◽  
pp. 159-167
Author(s):  
M.S. Jani ◽  
H.S. Patel ◽  
J.R. Rathod ◽  
K.D. Patel ◽  
V.M. Pathak ◽  
...  

In this paper structural and optical properties of CdSe thin films with different thickness deposited by thermal evaporation under vacuum onto glass substrates are presented. The structural investigations performed by means of XRD technique showed that the films have a polycrystalline and hexagonal (würtzite) structure. The values of some important parameters of the studied films (absorption coefficient and optical bandgap energy) are determined from transmission spectra. The values of the optical bandgap energy (Eg) calculated from the absorption spectra, ranged between 1.67 - 1.74 eV.


Sign in / Sign up

Export Citation Format

Share Document