scholarly journals Low-Temperature Synthesis, Structural and Optical Characterizations of The Novel Bisbs3 Thin Films as Anew Absorber Layer for Solar Cells

Author(s):  
I M El radaf ◽  
H.Y.S Al-Zahrani

Abstract In this research work, thin films of BiSbS3 have been successfully synthesized onto well cleaned soda-lima glass substrates via the chemical bath deposition procedure at different thicknesses (t= 159, 243, 296 and 362 nm). The X-ray diffraction patterns of the chemically deposited BiSbS3 films depicted that the synthesized films exposed polycrystalline nature and have an orthorhombic structure. The structural parameters of the chemically deposited BiSbS3 films were evaluated by Debye-Scherer’s formulas. The surface morphologies of the BiSbS3 films were fixed via the field-emission-scanning-electron microscope. The analyses of the linear optical parameters of the chemically deposited BiSbS3 thin films refer to improving the values of the absorption coefficient, α and the linear refractive index, n via the increase in the film thickness. In addition, there is an observed reduction in the energy gap, Eg values from 1.38 to 1.22 eV occurred by raising the film thickness. Furthermore, there is an enhancement in the nonlinear optical constants and the optoelectrical parameters occurred by raising the film thickness where the nonlinear refractive index, \({n}_{2},\)the optical free carrier concentration, \({N}_{opt}\) and the optical conductivity σopt were enlarged with increasing the values of film thickness. Moreover, the hot probe procedure was applied to the BiSbS3 thin films and this method demonstrated that the chemically deposited BiSbS3 films are p-type semiconductors.

Author(s):  
Islam M El radaf ◽  
Hnan Y Alzahrani

Abstract We deposited CuGaSnS4 thin films on soda-lima glass substrates via a spray pyrolysis process. The X-ray diffraction of CuGaSnS4 films established the formation of an orthorhombic single phase. In addition, the structural parameters of the CuGaSnS4 films were estimated by Debye-Scherer’s formulas, which showed that an enhancement in crystallite size (D) values occurred by increasing the thickness of the investigated films. The EDAX pattern of CuGaSnS4 films confirms a stoichiometric composition. The optical results revealed that the CuGaSnS4 films possessed a direct optical energy gap (Eg). The Eg values were reduced from 1.50 to 1.38 eV with the increase in thickness. Also, there was an observed increase in the linear refractive index and the linear absorption coefficient values occurred due to the increased thickness. Finally, the optoelectrical constants of the sprayed CuGaSnS4 films such as the optical conductivity (σopt) and the optical free carrier concentration to effective mass (N_opt/m^* ) were enlarged with increasing film thickness. The nonlinear optical study showed that the increase in film thickness enhanced the nonlinear optical constants of CuGaSnS4 films. The hot-probe procedure shows that the sprayed CuGaSnS4 films expose p-type conductivity.


Author(s):  
Hiba J. Ahmed ◽  
Asaad A. Kamil ◽  
Ammar A. Habeeb ◽  
Nabeel A. Bakr

In this study, Cu2CdSnS4 thin films were deposited on glass substrates at fixed concentrations: 0.02 M of (CuCl2.2H2O), 0.08 M of CS (NH2)2 and 0.01 M of both SnCl2.2H2O and (CdCl2.2H2O) using Chemical Spray Pyrolysis (CSP) technique at different deposition temperatures (300, 350, 400 and 450) °C. The thickness of all samples were (300 ± 10) nm. X-ray diffraction patterns showed that all films have a tetragonal structure with a preferred orientation of (112). The maximum value of the crystallite size was 8.09 nm at 400 °C deposition temperature. Raman spectra analysis confirmed the purity of the film peaks located at (332-333). The FESEM micrographs showed that the nanostructures appeared in the form of cauliflower. The highest average grain size was 62.8 nm for the film deposited at 300 °C substrate temperature. The optical properties of all films were studied by recording the transmittance and absorbance in the wavelength range (400-900) nm. The results showed that absorption occurs in the visible and ultraviolet regions. Through the Tauc’s equation, the optical energy gap was calculated for the allowed direct transition. Its value was in the range (1.59-1.40) eV. Therefore, these films are suitable for use in solar cell applications. Hall effect results showed that Cu2CdSnS4 thin films are p-type and the highest conductivity was 0.288 (Ω.cm)-1 at 400 ˚C corresponding to the maximum mobility value and the highest charge concentration.


2019 ◽  
Vol 14 (29) ◽  
pp. 1-7
Author(s):  
Farah Q. Kamil

PbxCd1-xSe compound with different Pb percentage (i.e. X=0,0.025, 0.050, 0.075, and 0.1) were prepared successfully. Thin filmswere deposited by thermal evaporation on glass substrates at filmthickness (126) nm. The optical measurements indicated thatPbxCd1-xSe films have direct optical energy gap. The value of theenergy gap decreases with the increase of Pb content from 1.78 eV to1.49 eV.


2019 ◽  
Vol 16 (3) ◽  
pp. 0588 ◽  
Author(s):  
Al-Taa'y Et al.

       Optical properties and surface morphology of pure and doped Polystyrene films with different divalent metals of Zn, Cu and Sn and one concentration percentage have been studied. Measurements of UV-Vis spectrophotometer and AFM spectroscopy were determined. The absorbance, transmittance and reflectance spectrums were used to study different optical parameters such as absorption coefficient, refractive index, extinction coefficient and energy gap in the wavelengths rang 200-800nm. These parameters have increased in the presence of the metals. The change in the calculated values of energy gaps with doping metals content has been investigated in terms of PS matrix structural modification. The value of optical energy gap was found decreasing from 4.5eV of pure PS to reach 4.45, 4.38 and 4.32eV for Zn, Cu and Sn respectively. Measurement by AFM spectroscopy was done for two and three dimensional topographic images. From figures, the data of roughness average were 7.29, 7.31, 3.37 and 6.73nm for samples (Blank, Zn, Cu and Sn) respectively.


2013 ◽  
Vol 334-335 ◽  
pp. 290-293 ◽  
Author(s):  
N. Baydogan ◽  
T. Ozdurmusoglu ◽  
Huseyin Cimenoglu ◽  
A.B. Tugrul

Doped ZnO:Al thin films were deposited on glass substrates by the solgel dip technique. Optical parameters such as the refractive index and the extinction coefficient tend to change with increasing annealing temperature.


2012 ◽  
Vol 26 (02) ◽  
pp. 1250012 ◽  
Author(s):  
V. V. ATUCHIN ◽  
V. SH. ALIEV ◽  
B. M. AYUPOV ◽  
I. V. KOROLKOV

Amorphous zirconium oxide (a- ZrO 2) thin films were prepared onto fuzzed quartz substrates by ion beam sputtering deposition (IBSD) method in ( Ar + O 2) gas mixture. Optical parameters of the films were evaluated by laser ellipsometry (λ = 632.8 nm ) and optical transmission measurements. Structural parameters were studied by XRD measurements. Variation of refractive index and film thickness have been defined as a function of time of high-temperature annealing at T = 900° C . Formation of monoclinic zirconium oxide (m- ZrO 2) nanocrystals with diameter of ~60 nm embedded into a- ZrO 2 matrix has been found by XRD analysis after long-time annealing.


2019 ◽  
Vol 27 (07) ◽  
pp. 1950175 ◽  
Author(s):  
İSHAK AFŞIN KARİPER

In this study, we produced Cadmium selenide (CdSe) crystalline thin film on commercial glass substrates via chemical bath deposition. Transmittance, absorbance, refractive index and optical bandgap of thin films were examined by UV/vis spectrum. XRD revealed a hexagonal form. The pH level of the baths in which CdSe thin films were deposited varied and optical and structural properties of the resulting thin films were analyzed. SEM analysis was used for surface analysis. Some features of the films were supposed to change with pH and these properties were investigated by testing different pH levels, which were 8, 9, 10 and 11. The variation of the optical bandgap changed between 1.60 and 1.75[Formula: see text]eV, according to the pH of deposition bath. Film thickness varied from 60[Formula: see text]nm to 93[Formula: see text]nm, with the variation of deposition bath’s pH. Moreover, it has been found that refractive index values were also changed with film thickness; these were calculated as 2.28, 2.19, 2.22 and 2.36 for 93.27, 60.97, 61.09 and 60.18[Formula: see text]nm, respectively. Dielectric constant also varied with refractive index, taking values 0.85, 0.75, 0.78, 0.93 for refractive indexes 2.28, 2.19, 2.22 and 2.36, respectively.


2021 ◽  
Author(s):  
Moustafa Ahmed ◽  
Ahmed Bakry ◽  
Essam R Shaaban ◽  
Hamed Dalir

Abstract ITO was prepared by mixing gradient In2O3 and SnO2 powders using solid phase reaction manner. Using electron beam gun tool, ITO films with varied thicknesses were fabricated. The structure, electrical and optical parameters of the prepared films were studied. XRD patterns were used to establish the micro-structural parameters (lattice strain and crystallite size). The SEM shows improvement of grain size with the increase of the film thickness. The electrical parameters of ITO films were measured by means of the standard four-point probe method. It was found that when the film thickness increases from 75 nm to 375 nm, the resistivity decreases to lower value of 1.65×10-4 Ω.cm and slightly increases to 1.93 ×10-4 Ω.cm at thickness of 375 nm. The ITO films with lower electrical properties are appropriate for high-efficiency CdTe solar cells. In terms of spectral ellipsomeric, three optical layer models (adhesive layer of the substrate/B-spline layer of ITO film/surface roughness layer) were applied to estimate the film thickness with high accuracy. The absorption coefficient and energy gap were calculated from the transmission and reflection spectra in the strong absorption region. As the film thickness increases, the optical energy gap was found to increase from 3.56 eV to 3.69 eV. In terms of Hall-effect measurements, both carrier concentration and hall mobility were determined. In addition, influences of ITO layers with various thicknesses on the performance of CdS/CdTe solar cells were checked. When the ITO window layer thickness is 325 nm, Jsc = 17 mA/cm2, Voc = 0.82 V, and FF = 57.4%, the calculated highest power conversion efficiency (PCE) is 8.6%.


2012 ◽  
Vol 268-270 ◽  
pp. 202-206
Author(s):  
Ying Xu ◽  
Peng Hua Ma ◽  
Mo Ning Liu

The AZO thin films had been prepared on glass substrates by APCVD process .The transmittance spectra of AZO thin films was measured with S-600 UV-Vis spectrophotometer . The visible light transmittance values of AZO thin films are about 85% and the thickness of the thin films well-distributed by the transmittance spectra of AZO films. Using the envelope method, the film thickness d is calculated about 964.43nm and the discrepancy is only 0.56% compared with the result of instrument measurements. The curve about the refractive index n with the incident wavelength is consistent with the reported literature results. The envelope method is suitable for the optical constants processing of some similar AZO films where exist weak absorption ranges (T≥0.4).


Sign in / Sign up

Export Citation Format

Share Document