scholarly journals Investigation of Flexible Arrayed Lactate Biosensor Based on Copper Doped Zinc Oxide Films Modified by Iron–Platinum Nanoparticles

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2062
Author(s):  
Yu-Hsun Nien ◽  
Zhi-Xuan Kang ◽  
Tzu-Yu Su ◽  
Chih-Sung Ho ◽  
Jung-Chuan Chou ◽  
...  

Potentiometric biosensors based on flexible arrayed silver paste electrode and copper-doped zinc oxide sensing film modified by iron-platinum nanoparticles (FePt NPs) are designed and manufactured to detect lactate in human. The sensing film is made of copper-doped zinc oxide (CZO) by a radio frequency (RF) sputtering system, and then modified by iron-platinum nanoparticles (FePt NPs). The surface morphology of copper-doped zinc oxide (CZO) is analyzed by scanning electron microscope (SEM). FePt NPs are analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The average sensitivity, response time, and interference effect of the lactate biosensors are analyzed by voltage-time (V-T) measurement system. The electrochemical impedance is analyzed by electrochemical impedance spectroscopy (EIS). The average sensitivity and linearity over the concentration range 0.2 mM–5 mM are 25.32 mV/mM and 0.977 mV/mM, respectively. The response time of the lactate biosensor is 16 s, with excellent selectivity.


Author(s):  
T. A. Emma ◽  
M. P. Singh

Optical quality zinc oxide films have been characterized using reflection electron diffraction (RED), replication electron microscopy (REM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Significant microstructural differences were observed between rf sputtered films and planar magnetron rf sputtered films. Piezoelectric materials have been attractive for applications to integrated optics since they provide an active medium for signal processing. Among the desirable physical characteristics of sputtered ZnO films used for this and related applications are a highly preferred crystallographic texture and relatively smooth surfaces. It has been found that these characteristics are very sensitive to the type and condition of the substrate and to the several sputtering parameters: target, rf power, gas composition and substrate temperature.



2014 ◽  
Vol 908 ◽  
pp. 124-128 ◽  
Author(s):  
S.B. Chen ◽  
Z.Y. Zhong

Thin films of transparent conducting gallium and titanium doped zinc oxide (GTZO) were prepared on glass substrates by magnetron sputtering technique using a sintered ceramic target. The microstructural properties of the deposited thin films were characterized with X-ray diffraction (XRD). The results demonstrated that the polycrystalline GTZO thin films consist of the hexagonal crystal structures with c-axis as the preferred growth orientation normal to the substrate, and that the working pressure significantly affects the crystal structures of the thin films. The GTZO thin film deposited at the working pressure of 0.4 Pa has the best crystallinity, the largest grain size and the lowest stress.



Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 964
Author(s):  
Jung-Chuan Chou ◽  
Si-Hong Lin ◽  
Tsu-Yang Lai ◽  
Po-Yu Kuo ◽  
Chih-Hsien Lai ◽  
...  

In this study, the potentiometric arrayed glucose biosensors, which were based on zinc oxide (ZnO) or aluminum-doped zinc oxide (AZO) sensing membranes, were fabricated by using screen-printing technology and a sputtering system, and graphene oxide (GO) and Nafion-glucose oxidase (GOx) were used to modify sensing membranes by using the drop-coating method. Next, the material properties were characterized by using a Raman spectrometer, a field-emission scanning electron microscope (FE-SEM), and a scanning probe microscope (SPM). The sensing characteristics of the glucose biosensors were measured by using the voltage–time (V-T) measurement system. Finally, electrochemical impedance spectroscopy (EIS) was conducted to analyze their charge transfer abilities. The results indicated that the average sensitivity of the glucose biosensor based on Nafion-GOx/GO/AZO was apparently higher than that of the glucose biosensor based on Nafion-GOx/GO/ZnO. In addition, the glucose biosensor based on Nafion-GOx/GO/AZO exhibited an excellent average sensitivity of 15.44 mV/mM and linearity of 0.997 over a narrow range of glucose concentration range, a response time of 26 s, a limit of detection (LOD) of 1.89 mM, and good reproducibility. In terms of the reversibility and stability, the hysteresis voltages (VH) were 3.96 mV and 2.42 mV. Additionally, the glucose biosensor also showed good anti-inference ability and reproducibility. According to these results, it is demonstrated that AZO is a promising material, which could be used to develop a reliable, simple, and low-cost potentiometric glucose biosensor.



1990 ◽  
Vol 73 (5) ◽  
pp. 1347-1350 ◽  
Author(s):  
Byung Ho Choi ◽  
Ho Bin Im ◽  
Jin Soo Song


1982 ◽  
Vol 11-12 ◽  
pp. 308-314 ◽  
Author(s):  
D.K. Murti


2015 ◽  
Vol 773-774 ◽  
pp. 672-676 ◽  
Author(s):  
Nurul Fadzilah Ab Rasid ◽  
Siti Nooraya Mohd Tawil ◽  
Che Ani Norhidayah ◽  
Mohd Zainizan Sahdan

Doping transition metal or rare-earth metal ion are one of the most popular topics in semiconductors. In this work, gadolinium (Gd) doped zinc oxide thin films was prepared using spin-coating technique with different concentrations in atomic percent (at.%). The influences of rare-earth ions doped into the zinc oxide films were studies. The effects on the physical and optical properties of the films were investigated by field emission scanning electron microscope, x-ray diffraction, atomic force microscopic and ultraviolet-visible spectrophotometer. It was found that the properties of zinc oxide can be tuned by changing the concentration physical and optical of Gd.



2013 ◽  
Vol 45 (1) ◽  
pp. 13-19 ◽  
Author(s):  
V. Kumar ◽  
D.K. Dwivedi ◽  
P. Agrawal

Zinc oxide films have been deposited on ultra-clean glass substrates by screenprinting method followed by sintering process. Optimum conditions for preparing good quality screen-printed films have been found. The optical band gap of the films has been studied using reflection spectra in wavelength range 325-600 nm by using double beam spectrophotometer. X-ray diffraction studies revealed that the films are polycrystalline in nature, single phase exhibiting wurtzite (hexagonal) structure with strong preferential orientation of grains along the (101) direction. Surface morphology of films has been studied by scanning electron microscopy (SEM) technique. The electrical resistivity of the films was measured in vacuum by two probe technique. PACS: 78.20.Ci; 78.50.Ge; 78.66.-w; 78.66.Hf.



2008 ◽  
Vol 23 (S1) ◽  
pp. S94-S97 ◽  
Author(s):  
G. Juárez-Díaz ◽  
H. Solache-Carranco ◽  
G. Romero-Paredes R. ◽  
R. Peña-Sierra ◽  
J. Martínez-Juárez ◽  
...  

Thin polycrystalline ZnO films were grown on silicon substrates by dc reactive magnetron sputtering using zinc oxide targets. The quality of the ZnO layers was assessed by X-ray diffraction (XRD), atomic force microscopy, Raman scattering, and photoluminescence measurements. The XRD studies and Raman studies revealed that the ZnO films crystallize in the wurtzite structure. Room temperature photoluminescence spectra consisted of a narrow near-band-edge ultraviolet band and a broad defect-related green band with peak positions at 380 and 516 nm, respectively. The main goal of the work was to define the growth conditions to prepare zinc oxide films with adequate properties to be used in electroluminescent devices. The films exhibited the best surface appearance with a 40:1 argon/oxygen flow rate, a total pressure of 1.5×10−3 mbar, and a substrate temperature of 230 °C. The structural and luminescence properties improved noticeably with the thermal annealing processes at 800 °C for 1 h.



Sign in / Sign up

Export Citation Format

Share Document