scholarly journals Study on Preparation of Triangular Melt-Spinning Poly (Vinyl Alcohol) Fibers and Its Fabric Strengthening and Toughening Epoxy

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2204
Author(s):  
Ting Zhou ◽  
Meng Wang ◽  
Ning Chen

Fiber-reinforced epoxy materials have the advantages of light weight, high strength and designability, which are widely used in high-technology fields. In this paper, triangular poly (vinyl alcohol) (PVA) fibers prepared by melt spinning were used for the first time in reinforcing and toughening epoxy resins. Based on intermolecular complexation and plasticization, the triangular PVA fibers were successfully prepared via melt spinning and hot drawing. The thermal properties, crystallinity, morphology and mechanical properties of the triangular fibers with different draw ratios were characterized by DSC, FTIR, XRD, SEM and tensile testing. The results show that the comprehensive performance of the triangular fibers increased with the increase in the draw ratio. The tensile strength of triangular fibers increased from 0.3 to 4.22 cN/dtex. Then, the triangular PVA fiber and circular PVA fiber-reinforced and toughened epoxy materials were prepared, respectively. The mechanical properties of triangular PVA fiber/epoxy composites were higher than that of circular fiber-reinforced and toughened epoxy materials. Furthermore, the single-fiber pull-out test was used to analyze the interface capability of fibers and epoxy. The pull-out force of the circular fiber was 1.24 N, while that of the triangular fiber was 2.64 N. The specific surface area of the triangular PVA fiber was larger than that of the circular PVA fiber, which better made its contact with epoxy and was not easily pulled out. Experiments prove that triangular PVA fiber is an ideal material for strengthening and toughening epoxy resin.

Author(s):  
K.L. More ◽  
R.A. Lowden

The mechanical properties of fiber-reinforced composites are directly related to the nature of the fiber-matrix bond. Fracture toughness is improved when debonding, crack deflection, and fiber pull-out occur which in turn depend on a weak interfacial bond. The interfacial characteristics of fiber-reinforced ceramics can be altered by applying thin coatings to the fibers prior to composite fabrication. In a previous study, Lowden and co-workers coated Nicalon fibers (Nippon Carbon Company) with silicon and carbon prior to chemical vapor infiltration with SiC and determined the influence of interfacial frictional stress on fracture phenomena. They found that the silicon-coated Nicalon fiber-reinforced SiC had low flexure strengths and brittle fracture whereas the composites containing carbon coated fibers exhibited improved strength and fracture toughness. In this study, coatings of boron or BN were applied to Nicalon fibers via chemical vapor deposition (CVD) and the fibers were subsequently incorporated in a SiC matrix. The fiber-matrix interfaces were characterized using transmission and scanning electron microscopy (TEM and SEM). Mechanical properties were determined and compared to those obtained for uncoated Nicalon fiber-reinforced SiC.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 691
Author(s):  
O. Sánchez-Aguinagalde ◽  
Ainhoa Lejardi ◽  
Emilio Meaurio ◽  
Rebeca Hernández ◽  
Carmen Mijangos ◽  
...  

Chitosan (CS) and poly (vinyl alcohol) (PVA) hydrogels, a polymeric system that shows a broad potential in biomedical applications, were developed. Despite the advantages they present, their mechanical properties are insufficient to support the loads that appear on the body. Thus, it was proposed to reinforce these gels with inorganic glass particles (BG) in order to improve mechanical properties and bioactivity and to see how this reinforcement affects levofloxacin drug release kinetics. Scanning electron microscopy (SEM), X-ray diffraction (XRD), swelling tests, rheology and drug release studies characterized the resulting hydrogels. The experimental results verified the bioactivity of these gels, showed an improvement of the mechanical properties and proved that the added bioactive glass does affect the release kinetics.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2104
Author(s):  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

The management of chronic wounds is challenging. The factors that impede wound healing include malnutrition, diseases (such as diabetes, cancer), and bacterial infection. Most of the presently utilized wound dressing materials suffer from severe limitations, including poor antibacterial and mechanical properties. Wound dressings formulated from the combination of biopolymers and synthetic polymers (i.e., poly (vinyl alcohol) or poly (ε-caprolactone) display interesting properties, including good biocompatibility, improved biodegradation, good mechanical properties and antimicrobial effects, promote tissue regeneration, etc. Formulation of these wound dressings via electrospinning technique is cost-effective, useful for uniform and continuous nanofibers with controllable pore structure, high porosity, excellent swelling capacity, good gaseous exchange, excellent cellular adhesion, and show a good capability to provide moisture and warmth environment for the accelerated wound healing process. Based on the above-mentioned outstanding properties of nanofibers and the unique properties of hybrid wound dressings prepared from poly (vinyl alcohol) and poly (ε-caprolactone), this review reports the in vitro and in vivo outcomes of the reported hybrid nanofibers.


2012 ◽  
Vol 602-604 ◽  
pp. 157-160
Author(s):  
Wei Min Kang ◽  
Jing Yan ◽  
Bo Wen Cheng

Polyurethane-poly (vinyl alcohol)/chitosan (PU-PVA/CS) blend nanofiber nonwovens were successfully prepared by coelectrospinning in this paper. The morphology, diameter and structure of the electrospun nanomaterials were examined by SEM and FITR, and their mechanical properties were tested. The diameter distribution of the nanofibers was measured by Image-Pro Plus. The results show that the ideal nanofibers with the diameter in 50-350 nm can be obtained with the proper technical parameters of PU and PVA/CS nanofibers as follows: the spinning voltage at 30 kV and 40 kV, the extruding speed at 6 mL/h and 0.5 ml/h, the collecting distance at 150 mm and 200 mm, respectively.


2014 ◽  
Vol 604 ◽  
pp. 180-183
Author(s):  
Velta Tupureina ◽  
Anda Dzene ◽  
Marcis Dzenis

Formation process of flax fiber reinforced biocomposites based on waterborne matrix systems from modified polymers - polyhydroxybutyrate, poly (vinyl alcohol) was developed by suspension casting technique. Two kind of flax fiber as reinforcement was employed Latvian variety Vega-2 and flax combing. The correlation between matrix composition, fiber origin, content and mechanical characteristics, water vapour absorption and biodegradability was established. Optimal characteristics of elaborated eco-composites were obtained by use of flax combing with fiber content ~ 30 wt. %.


1990 ◽  
Vol 58 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Urushizaki Fumio ◽  
Yamaguchi Hiroshi ◽  
Nakamura Kumiko ◽  
Numajiri Sachihiko ◽  
Sugibayashi Kenji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document