scholarly journals Poly(butylene succinate-co-ε-caprolactone) Copolyesters: Enzymatic Synthesis in Bulk and Thermal Properties

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2679
Author(s):  
María Núñez ◽  
Sebastián Muñoz-Guerra ◽  
Antxon Martínez de Ilarduya

This work explores for the first time the enzymatic synthesis of poly(butylene-co-ε-caprolactone) (PBSCL) copolyesters in bulk using commercially available monomers (dimethyl succinate (DMS), 1,4-butanediol (BD), and ε-caprolactone (CL)). A preliminary kinetic study was carried out which demonstrated the higher reactivity of DMS over CL in the condensation/ring opening polymerization reaction, catalyzed by Candida antarctica lipase B. PBSCL copolyesters were obtained with high molecular weights and a random microstructure, as determined by 13C NMR. They were thermally stable up to 300 °C, with thermal stability increasing with the content of CL in the copolyester. All of them were semicrystalline, with melting temperatures and enthalpies decreasing up to the eutectic point observed at intermediate compositions, and glass transition temperatures decreasing with the content of CL in the copolyester. The use of CALB provided copolyesters free from toxic metallic catalyst, which is very useful if the polymer is intended to be used for biomedical applications.

RSC Advances ◽  
2017 ◽  
Vol 7 (34) ◽  
pp. 21258-21267 ◽  
Author(s):  
Agueda Sonseca ◽  
Miroslawa El Fray

Candida antarcticalipase B was successfully employed for the first time as a biocatalyst to obtain high molecular weight PBS : DLS copolyesterviaa two-stage method in diphenyl ether from diethyl succinate, 1,4-butanediol, and dimer linoleic diol.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 819
Author(s):  
Nicolai Rügen ◽  
Timothy P. Jenkins ◽  
Natalie Wielsch ◽  
Heiko Vogel ◽  
Benjamin-Florian Hempel ◽  
...  

Assassin bug venoms are potent and exert diverse biological functions, making them potential biomedical goldmines. Besides feeding functions on arthropods, assassin bugs also use their venom for defense purposes causing localized and systemic reactions in vertebrates. However, assassin bug venoms remain poorly characterized. We collected the venom from the assassin bug Rhynocoris iracundus and investigated its composition and bioactivity in vitro and in vivo. It caused lysis of murine neuroblastoma, hepatoma cells, and healthy murine myoblasts. We demonstrated, for the first time, that assassin bug venom induces neurolysis and suggest that it counteracts paralysis locally via the destruction of neural networks, contributing to tissue digestion. Furthermore, the venom caused paralysis and melanization of Galleria mellonella larvae and pupae, whilst also possessing specific antibacterial activity against Escherichia coli, but not Listeria grayi and Pseudomonas aeruginosa. A combinatorial proteo-transcriptomic approach was performed to identify potential toxins responsible for the observed effects. We identified neurotoxic Ptu1, an inhibitory cystin knot (ICK) toxin homologous to ω-conotoxins from cone snails, cytolytic redulysins homologous to trialysins from hematophagous kissing bugs, and pore-forming hemolysins. Additionally, chitinases and kininogens were found and may be responsible for insecticidal and cytolytic activities. We demonstrate the multifunctionality and complexity of assassin bug venom, which renders its molecular components interesting for potential biomedical applications.


Author(s):  
Shuo Zhang ◽  
Frederieke A. M. van der Mee ◽  
Roel J. Erckens ◽  
Carroll A. B. Webers ◽  
Tos T. J. M. Berendschot

AbstractIn this report we present a confocal Raman system to identify the unique spectral features of two proteins, Interleukin-10 and Angiotensin Converting Enzyme. Characteristic Raman spectra were successfully acquired and identified for the first time to our knowledge, showing the potential of Raman spectroscopy as a non-invasive investigation tool for biomedical applications.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1094
Author(s):  
Allan Radaic ◽  
Nam E. Joo ◽  
Soo-Hwan Jeong ◽  
Seong-II Yoo ◽  
Nicholas Kotov ◽  
...  

Prostate and breast cancer are the current leading causes of new cancer cases in males and females, respectively. Phosphatidylserine (PS) is an essential lipid that mediates macrophage efferocytosis and is dysregulated in tumors. Therefore, developing therapies that selectively restore PS may be a potential therapeutic approach for carcinogenesis. Among the nanomedicine strategies for delivering PS, biocompatible gold nanoparticles (AuNPs) have an extensive track record in biomedical applications. In this study, we synthesized biomimetic phosphatidylserine-caped gold nanoparticles (PS-AuNPs) and tested their anticancer potential in breast and prostate cancer cells in vitro. We found that both cell lines exhibited changes in cell morphology indicative of apoptosis. After evaluating for histone-associated DNA fragments, a hallmark of apoptosis, we found significant increases in DNA fragmentation upon PS-AuNP treatment compared to the control treatment. These findings demonstrate the use of phosphatidylserine coupled with gold nanoparticles as a potential treatment for prostate and breast cancer. To the best of our knowledge, this is the first time that a phosphatidylserine-capped AuNP has been examined for its therapeutic potential in cancer therapy.


2017 ◽  
Vol 13 ◽  
pp. 9-14
Author(s):  
Alexander I. Tyurin ◽  
Andrey O. Zhigachev ◽  
Alexey V. Umrikhin ◽  
Vyacheslav V. Rodaev ◽  
Tatyana S. Pirozhkova

For the first time nanostructured engineering ceramics were prepared from natural zirconia mineral (baddeleyite) with CaO as a tetragonal phase stabilizer. The effect of synthesis conditions on microstructure and mechanical properties of the baddeleyite-based ceramics is reported, furthermore, the effect of calcia content on hardness and fracture toughness is studied. Optimal calcia concentration and synthesis conditions are found, corresponding hardness and fracture toughness values are 10,8 GPa and 13,3 MPa×m1/2. The reported mechanical properties are comparable to those typically reported for yttria-stabilized engineering zirconia ceramics, prepared from chemically synthesized zirconia.


2021 ◽  
Vol 2021 (2) ◽  
pp. 90-100
Author(s):  
V. S. Sudavtsova ◽  
◽  
V,A, Shevchuk ◽  
L. O. Romanova ◽  
M. I. Ivanov ◽  
...  

The thermochemical properties of alloys were determined for the first time by calorimetry Bi—Eu system at a temperature of 1200 K in the range of 0 ≤ xBi ≤ 0,2 and 0,77 ≤ xBi ≤ 1,0. It is established that the minimum value of the enthalpy of mixing is equal to –61,7 ± 0,5 kJ / mol at xBi = 0,5. = –184,7 ± 16,7 kJ / mol, = = –206,9 ± 21,8 kJ / mol. The activities of the components were calculated according to the model of an of the ideal associated solution (IAR), using the thermochemical properties of the melts of the Bі—Eu. system. It has been established that the activities of the components show large negative deviations from ideal solutions. To predict the enthalpies of formation of LnBi compounds, the available literature data on these parameters are analyzed and the most reliable ones are presented as a dependence on ∆fH = f(ZLn). It is established that the enthalpies of formation LnBi change smoothly and monotonically with the exception of Bi—Eu and Bi—Yb systems. This is due to the large size factors for the last two systems. To combine all the enthalpy data of Ln—Bi intermetallic formation of Ln—Bi systems depending on the sequence number Ln, we need similar values for the Eu—Bi compound. But at present they are not known, so based on the above, it was assumed that the value of the minimum enthalpy of mixing will be close to the enthalpy of formation of this compound. This hypothesis is confirmed by data on the enthalpies formation of phase YbBi and equiatomic melts of binary of Yb—Bi system. To confirm the thermodynamic data, we compare the known melting temperatures of the formed intermediate phases, known from the diagrams state Bi—Ln system. The obtained dependences correlate with ∆fH = f(ZLn ) і ∆V = f(ZLn). This means that the predictions of thermochemical properties accurately reflect the nature of the considered melts of the Bi—Eu system. Keywords: thermochemical properties, melts, compounds, Bi, Eu.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Seyedeh Zahra Mirzaei ◽  
Hamed Esmaeil Lashgarian ◽  
Maryam Karkhane ◽  
Kiana Shahzamani ◽  
Alaa Kamil Alhameedawi ◽  
...  

AbstractFor the first time, an aqueous extract of Melilotus officinalis was used to synthesize bimetallic silver selenide chalcogenide nanostructures (Ag2Se-NCs). The formation of NCs was confirmed and characterized by UV–visible and FTIR spectroscopy, SEM and TEM imaging, XRD and EDX crystallography, zeta potential (ZP) and size distribution (DLS). The bioactivities of biosynthesized Ag2Se-NCs, such as antibacterial, antibiofilm, antioxidant and cytotoxicity potentials, were then examined. Bio-based Ag2Se-NCs were successfully synthesized with mostly spherical shape in the size range of 20–40 nm. Additionally, the MIC and MBC values of Ag2Se-NCs against β-lactam-resistant Pseudomonas aeruginosa (ATCC 27853) were 3.12 and 50 µg/ml, respectively. The DPPH scavenging potential of Ag2Se-NCs in terms of IC50 was estimated to be 58.52. Green-synthesized Ag2Se-NCs have been shown to have promising benefits and could be used for biomedical applications. Although the findings indicate promising bioactivity of Ag2Se-NCs synthesized by M. officinalis extract (MO), more studies are required to clarify the comprehensive mechanistic biological activities.


2021 ◽  
Author(s):  
Anatoly Belyaev

Several varieties of virus-like microfossils, morphologically similar to modern giant viruses of the Mimiviridae family, have been identified in microquartzites in the 1.64 Ga volcanogenic-sedimentary strata in Hogland Island in the Gulf of Finland, Russia. Microquartzites contain graphite enriched in a light carbon isotope 12С, as is typical for the rocks forming with participation of living matter. Abundant remains of silificated and ferruginizated microfossils of planktonic microorganisms and virus-like structures were found in fragments of silificated biofilms. However, virus-like microfossils exceed modern giant viruses in linear dimensions by a factor of a thousand or more (Belyaev, 2018; 2019; Belyaev, Yukhalin, 2021) and contain structures similar to eukaryotic nuclei. In addition, data were obtained that can be interpreted as a fact of parasitic relationships of virus-like formations with microfossils of amoeba-like microorganisms. Inside, and in the immediate surroundings of some virus-like structures, small oval zonal formations occur, which, possibly, represent silificated viral particles, the most ancient obligate super parasites similar to "satellite" virophages in mimiviruses (La Scola, et al., 2008). Apatite grains found in the mineralized cytoplasm and nuclei of virus-like microfossils, most likely, crystallized from phosphoric acid residues of decayed nucleotides. This allowed for the first time to roughly estimate the size of the genomes of the most ancient virus-like structures, which exceeded the genomes of modern giant viruses and unicellular organisms by a factor of thousands (Belyaev, Yukhalin, 2021). The genome masses of eukaryotic microfossils and virus-like structures were also estimated following the principle of genomic-nuclear proportionality, according to which the molecular weights of genomes are directly proportional to the size of the nuclei. In this case, the size of genomes of virus-like structures estimated both form the enclosed apatite grains and the size of nuclei, averaged tens of thousands of picograms and, thus, could contain tens of thousands billions of base pairs. It is assumed that microfossils of virus-like structures from the group of unclear systematic position Dinoviridae Incertae sedis were representatives of the extinct family of unicellular facultative parasites or were the ancestors of giant viruses of the Mimiviridae family.


Sign in / Sign up

Export Citation Format

Share Document