scholarly journals Mechanical Performance of Granite Fine Fly Dust-Filled Basalt/Glass Polyurethane Polymer Hybrid Composites

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3032
Author(s):  
Napisah Sapiai ◽  
Aidah Jumahat ◽  
Mohammad Jawaid ◽  
Md Zin Abu ◽  
Mochamad Chalid

The granite processing industry generates large amounts of bottom granite dust waste every day. After the drying and heating process of concrete mixture production, the granite dust is blown and collected in the filtering nozzle. This very fine particle granite dry fly dust, with a particle size maximum distribution of 500 μm, can easily be blown away by wind and cause serious environmental impacts. The use of this waste material would be an effective way to reduce such impacts. Therefore, this paper presents an experimental study on the potential of granite dust as a filler in enhancing the mechanical performance of a hybrid basalt/glass (WB/GCSM) composite. The unhole and open hole tensile (UHT and OHT) properties, low velocity impact (LVI) properties, quasi-static indentations (QSI) properties, flexural properties, interlaminar shear stress (ILSS) properties, and morphology of the developed WB/GCSM composites were evaluated. To meet the objective of this study, composite specimens were produced using 1.5–60 μm granite fly dust at three (3) different loadings (1, 3 and 5 wt%). This granite fly dust was incorporated into polyurethane resin using a mechanical stirring technique. The production of FRP laminates then completed using a hand lay-up and vacuum bagging technique. Four types of the WB/GCSM composites systems, i.e., [WB/GCSM], [WB/GCSM/1GD], [WB/GCSM/3GD] and [WB/GCSM/5GD] were fabricated and compared. The analysis results for the mechanical tests revealed that the incorporation of granite dust of up to 3 wt% had increased the UHT, OHT, LVI, QSI, flexural and ILSS properties of all WB/GCSM composites systems. Higher levels of damage tolerance in UHT and OHT tests, and increased ductility index in the LVI test were obtained when granite dust was added up to 5 wt%. However, a remarkable improvement in all mechanical properties was noticed for [WB/GCSM/1GD], which recorded the highest mechanical performance among all WB/GCSM composite systems.

2018 ◽  
Vol 53 (12) ◽  
pp. 1717-1734 ◽  
Author(s):  
M Ravandi ◽  
U Kureemun ◽  
M Banu ◽  
WS Teo ◽  
Liu Tong ◽  
...  

This work investigates the effects of interlayer hybrid fiber dispersion on the impact response of carbon-flax epoxy hybrid laminates at low carbon volume fractions, and benchmarks the mechanical performance enhancement against the non-hybrid flax epoxy. Five hybrid laminate stacking sequences with similar carbon-to-flax weight ratio were fabricated and subjected to low-velocity impact at three different energy values, generating non-perforated and perforated damage states. A virtual drop-weight impact test that models intralaminar failure based on continuum damage mechanics approach, and delamination using cohesive elements, was also implemented to evaluate the material behavior and damage development in the composites. Simulation results were then verified against experimental data. Results suggested that positioning stiffer carbon plies at the impact face does not necessarily lead to enhancement of the hybrid's impact properties. On the contrary, flax plies at the impacted side lead to significant improvement in impact resistance compared to the non-hybrid flax composite with similar thickness. Results of finite element analysis showed that carbon plies play a significant role in the hybrid laminate's energy absorption characteristics due to lower failure strain.


2008 ◽  
Vol 385-387 ◽  
pp. 485-488
Author(s):  
Nicolae Constantin ◽  
Viorel Anghel ◽  
Mircea Găvan ◽  
Ştefan Sorohan

The research work behind this paper focused a rather extensive assessment of hybrid composites made of pure aluminium sheets, alternating with GFRP and CFRP layers. Static, fatigue and low velocity impact tests were performed, combined with NDI on damaged samples, using Lockin thermography, on specimens obtained from the two hybrid laminates and from genuine GFRP and CFRP laminates, all having five layers. The static and fatigue tests were made on parallel specimens, un-notched and having a central 5 mm drilled hole, with various failure modes. The low velocity impact tests were followed by CAI tests, meant to evaluate residual mechanical performance and damage tolerance. Lockin thermography was used for prior assessment of damage.


2021 ◽  
Vol 32 ◽  
pp. 85-97
Author(s):  
Gunturu Bujjibabu ◽  
Vemulapalli Chittaranjan Das ◽  
Malkapuram Ramakrishna ◽  
Konduru Nagarjuna

Banana/Coir fiber reinforced polypropylene hybrid composites was formulated by using twin screw extruder and injection molding machine. Specimens were prepared untreated and treated B/C Hybrid composites with 4% and 8% of MA-g-PP to increase its compatibility with the polypropylene matrix. Both the without MA-g-PP and with MA-g-PP B/C hybrid composites was utilized and three levels of B/C fiber loadings 15/5, 10/10 and 5/15 % were used during manufacturing of B/C reinforced polypropylene hybrid composites. In this work mechanical performance (tensile, flexural and impact strengths) of untreated and treated (coupling agent) with 4% and 8% of MA-g-PP B/C fibers reinforced polypropylene hybrid composite have been investigated. Treated with MA-g-PP B/C fibers reinforced specimens explored better mechanical properties compared to untreated B/C fibers reinforced polypropylene hybrid composites. Mechanical tests represents that tensile, flexural and impact strength increases with increase in concentration of coupling agent compared to without coupling agent MA-g-PP hybrid composites . B/C fibers reinforced polymer composites exhibited higher tensile, flexural and impact strength at 5% of Banana fiber, 15% of fiber Coir in the presence of 8% of MA-g-PP compared to 4% of MA-g-PP and untreated hybrid composites. The percentage of water absorption in the B/C fibers reinforced polypropylene hybrid composites resisted due to the presence of coupling agent MA-g-PP and thermogravimetry analysis (TGA) also has done.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1395 ◽  
Author(s):  
Liwei Wu ◽  
Wei Wang ◽  
Qian Jiang ◽  
Chunjie Xiang ◽  
Ching-Wen Lou

The effects of braided architecture and co-braided hybrid structure on low-velocity response of carbon-aramid hybrid three-dimensional five-directional (3D5d) braided composites were experimentally investigated in this study. Low-velocity impact was conducted on two types of hybridization and one pure carbon fiber braided reinforced composites under three velocities. Damage morphologies after low-velocity impact were detected by microscopy and ultrasonic nondestructive testing. Interior damages of composites were highly dependent on yarn type and alignment. Impact damage tolerance was introduced to evaluate the ductility of hybrid composites. Maximum impact load and toughness changed with impact velocity and constituent materials of the composites. The composite with aramid fiber as axial yarn and carbon fiber as braiding yarn showed the best impact resistance due to the synergistic effect of both materials. Wavelet transform was applied in frequency and time domain analyses to reflect the failure mode and mechanism of hybrid 3D5d braided composites. Aramid fibers were used either as axial yarns or braiding yarns, aiding in the effective decrease in the level of initial damage. In particular, when used as axial yarns, aramid fibers effectively mitigate the level of damage during damage evolution.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 646
Author(s):  
Siti Madiha Muhammad Amir ◽  
Mohamed Thariq Hameed Sultan ◽  
Ain Umaira Md Shah ◽  
Mohammad Jawaid ◽  
Syafiqah Nur Azrie Safri ◽  
...  

This work investigates the dynamic impact response of Kevlar/oil palm empty fruit bunch (EFB) hybrid composite structures with/without gamma radiation under low velocity impact (LVI) and compression after impact (CAI) test. The layering pattern Kevlar/oil palm EFB/Kevlar (K/OP/K) was applied in this work. Irradiation with gamma ray with various doses were applied from 25–150 kGy. LVI results shows that hybrid Kevlar/oil palm EFBs (Kevlar/OPEFB) that were not irradiated have greater impact resistance as compared to irradiated hybrid Kevlar/OPEFB. It was also observed that the hybridization of Kevlar/OPEFB with gamma irradiation helped to improve the compressive residual strength of the composites. It was found that Kevlar/OPEFB hybrid composites with the layering sequence K/OP/K can withstand up to 35 J of impact energy, with the optimum gamma radiation dose at 50 kGy.


Sign in / Sign up

Export Citation Format

Share Document