scholarly journals High-Sensitivity Flexible Pressure Sensor-Based 3D CNTs Sponge for Human–Computer Interaction

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3465
Author(s):  
Jianli Cui ◽  
Xueli Nan ◽  
Guirong Shao ◽  
Huixia Sun

Researchers are showing an increasing interest in high-performance flexible pressure sensors owing to their potential uses in wearable electronics, bionic skin, and human–machine interactions, etc. However, the vast majority of these flexible pressure sensors require extensive nano-architectural design, which both complicates their manufacturing and is time-consuming. Thus, a low-cost technology which can be applied on a large scale is highly desirable for the manufacture of flexible pressure-sensitive materials that have a high sensitivity over a wide range of pressures. This work is based on the use of a three-dimensional elastic porous carbon nanotubes (CNTs) sponge as the conductive layer to fabricate a novel flexible piezoresistive sensor. The synthesis of a CNTs sponge was achieved by chemical vapor deposition, the basic underlying principle governing the sensing behavior of the CNTs sponge-based pressure sensor and was illustrated by employing in situ scanning electron microscopy. The CNTs sponge-based sensor has a quick response time of ~105 ms, a high sensitivity extending across a broad pressure range (less than 10 kPa for 809 kPa−1) and possesses an outstanding permanence over 4,000 cycles. Furthermore, a 16-pixel wireless sensor system was designed and a series of applications have been demonstrated. Its potential applications in the visualizing pressure distribution and an example of human–machine communication were also demonstrated.

Author(s):  
Jiang Zhao ◽  
Jiahao Gui ◽  
Jinsong Luo ◽  
Jing Gao ◽  
Caidong Zheng ◽  
...  

Abstract Graphene-based pressure sensors have received extensive attention in wearable devices. However, reliable, low-cost, and large-scale preparation of structurally stable graphene electrodes for flexible pressure sensors is still a challenge. Herein, for the first time, laser-induced graphene (LIG) powder are prepared into screen printing ink, and shape-controllable LIG patterned electrodes can be obtained on various substrates using a facile screen printing process, and a novel asymmetric pressure sensor composed of the resulting screen-printed LIG electrodes has been developed. Benefit from the 3D porous structure of LIG, the as-prepared flexible LIG screen-printed asymmetric pressure sensor has super sensing properties with a high sensitivity of 1.86 kPa−1, low detection limit of about 3.4 Pa, short response time, and long cycle durability. Such excellent sensing performances give our flexible asymmetric LIG screen-printed pressure sensor the ability to realize real-time detection of tiny body physiological movements (such as wrist pulse and pronunciation action). Besides, the integrated sensor array has a multi-touch function. This work could stimulate an appropriate approach to designing shape-controllable LIG screen-printed patterned electrodes on various flexible substrates to adapt the specific needs of fulfilling compatibility and modular integration for potential application prospects in wearable electronics.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 664 ◽  
Author(s):  
Junsong Hu ◽  
Junsheng Yu ◽  
Ying Li ◽  
Xiaoqing Liao ◽  
Xingwu Yan ◽  
...  

The reasonable design pattern of flexible pressure sensors with excellent performance and prominent features including high sensitivity and a relatively wide workable linear range has attracted significant attention owing to their potential application in the advanced wearable electronics and artificial intelligence fields. Herein, nano carbon black from kerosene soot, an atmospheric pollutant generated during the insufficient burning of hydrocarbon fuels, was utilized as the conductive material with a bottom interdigitated textile electrode screen printed using silver paste to construct a piezoresistive pressure sensor with prominent performance. Owing to the distinct loose porous structure, the lumpy surface roughness of the fabric electrodes, and the softness of polydimethylsiloxane, the piezoresistive pressure sensor exhibited superior detection performance, including high sensitivity (31.63 kPa−1 within the range of 0–2 kPa), a relatively large feasible range (0–15 kPa), a low detection limit (2.26 pa), and a rapid response time (15 ms). Thus, these sensors act as outstanding candidates for detecting the human physiological signal and large-scale limb movement, showing their broad range of application prospects in the advanced wearable electronics field.


2019 ◽  
Vol 16 (3) ◽  
pp. 117-123
Author(s):  
Tsung-Ching Huang ◽  
Ting Lei ◽  
Leilai Shao ◽  
Sridhar Sivapurapu ◽  
Madhavan Swaminathan ◽  
...  

Abstract High-performance low-cost flexible hybrid electronics (FHE) are desirable for applications such as internet of things and wearable electronics. Carbon nanotube (CNT) thin-film transistor (TFT) is a promising candidate for high-performance FHE because of its high carrier mobility, superior mechanical flexibility, and material compatibility with low-cost printing and solution processes. Flexible sensors and peripheral CNT-TFT circuits, such as decoders, drivers, and sense amplifiers, can be printed and hybrid-integrated with thinned (<50 μm) silicon chips on soft, thin, and flexible substrates for a wide range of applications, from flexible displays to wearable medical devices. Here, we report (1) a process design kit (PDK) to enable FHE design automation for large-scale FHE circuits and (2) solution process-proven intellectual property blocks for TFT circuits design, including Pseudo-Complementary Metal-Oxide-Semiconductor (Pseudo-CMOS) flexible digital logic and analog amplifiers. The FHE-PDK is fully compatible with popular silicon design tools for design and simulation of hybrid-integrated flexible circuits.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3895
Author(s):  
Yelin Ko ◽  
Chi Cuong Vu ◽  
Jooyong Kim

Flexible and wearable pressure sensors have attracted significant attention owing to their roles in healthcare monitoring and human–machine interfaces. In this study, we introduce a wide-range, highly sensitive, stable, reversible, and biocompatible pressure sensor based on a porous Ecoflex with tilted air-gap-structured and carbonized cotton fabric (CCF) electrodes. The knitted structure of electrodes demonstrated the effectiveness of the proposed sensor in enhancing the pressure-sensing performance in comparison to a woven structure due to the inherent properties of naturally generated space. In addition, the presence of tilted air gaps in the porous elastomer provided high deformability, thereby significantly improving the sensor sensitivity compared to other dielectric structures that have no or vertical air gaps. The combination of knitted CCF electrodes and the porous dielectric with tilted air gaps achieved a sensitivity of 24.5 × 10−3 kPa−1 at 100 kPa, along with a wide detection range (1 MPa). It is also noteworthy that this novel method is low-cost, facile, scalable, and ecofriendly. Finally, the proposed sensor integrated into a smart glove detected human motions of grasping water cups, thus demonstrating its potential applications in wearable electronics.


NANO ◽  
2019 ◽  
Vol 14 (07) ◽  
pp. 1950081 ◽  
Author(s):  
Wendan Jia ◽  
Qiang Zhang ◽  
Yongqiang Cheng ◽  
Dong Zhao ◽  
Yan Liu ◽  
...  

Flexible pressure sensors based on piezoresistive induction have recently become a research hotspot due to the simple device structure, low energy consumption, easy readout mechanism and excellent performance. For practical applications, flexible pressure sensors with both high sensitivity and low-cost mass production are highly desirable. Herein, this paper presents a high-sensitivity piezoresistive pressure sensor based on a micro-structured elastic electrode, which is low cost and can be mass-produced by a simple method of sandpaper molding. The micro-structure of the electrode surface under external pressure causes a change in the effective contact area and the distance between the electrodes, which exhibits great pressure sensitivity. The test results show that the surface structure is twice as sensitive as the planar structure under low pressure conditions. This is because of the special morphology of silver nanowires (AgNWs), which exhibits the tip of nanostructures on the surface and realizes the quantum tunneling mechanism. The sensor has high sensitivity for transmitting signals in real time and it can also be used to detect various contact actions. The low cost mass production and high sensitivity of flexible pressure sensors pave the way for electronic skin, wearable healthcare monitors and contact inspection applications.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5069
Author(s):  
Tim Mike de Rijk ◽  
Walter Lang

Flexible pressure sensors with piezoresistive polymer composites can be integrated into elastomers to measure pressure changes in sealings, preemptively indicating a replacement is needed before any damage or leakage occurs. Integrating small percentages of high aspect ratio multi-walled carbon nanotubes (MWCNTs) into polymers does not significantly change its mechanical properties but highly affects its electrical properties. This research shows a pressure sensor based on homogeneous dispersed MWCNTs in polydimethylsiloxane with a high sensitivity region (0.13% kPa−1, 0–200 kPa) and sensitive up to 500 kPa. A new 3D-printed mold is developed to directly deposit the conductive polymer on the electrode structures, enabling sensor thicknesses as small as 100 μm.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1120 ◽  
Author(s):  
Kangning Liu ◽  
Ziqiang Zhou ◽  
Xingwu Yan ◽  
Xiang Meng ◽  
Hua Tang ◽  
...  

The rational design of high-performance flexible pressure sensors with both high sensitivity and wide linear range attracts great attention because of their potential applications in wearable electronics and human-machine interfaces. Here, polyaniline nanofiber wrapped nonwoven fabric was used as the active material to construct high performance, flexible, all fabric pressure sensors with a bottom interdigitated textile electrode. Due to the unique hierarchical structures, large surface roughness of the polyaniline coated fabric and high conductivity of the interdigitated textile electrodes, the obtained pressure sensor shows superior performance, including ultrahigh sensitivity of 46.48 kPa−1 in a wide linear range (<4.5 kPa), rapid response/relaxation time (7/16 ms) and low detection limit (0.46 Pa). Based on these merits, the practical applications in monitoring human physiological signals and detecting spatial distribution of subtle pressure are demonstrated, showing its potential for health monitoring as wearable electronics.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6588
Author(s):  
Jun Ho Lee ◽  
Jae Sang Heo ◽  
Keon Woo Lee ◽  
Jae Cheol Shin ◽  
Jeong-Wan Jo ◽  
...  

For wearable health monitoring systems and soft robotics, stretchable/flexible pressure sensors have continuously drawn attention owing to a wide range of potential applications such as the detection of human physiological and activity signals, and electronic skin (e-skin). Here, we demonstrated a highly stretchable pressure sensor using silver nanowires (AgNWs) and photo-patternable polyurethane acrylate (PUA). In particular, the characteristics of the pressure sensors could be moderately controlled through a micro-patterned hole structure in the PUA spacer and size-designs of the patterned hole area. With the structural-tuning strategies, adequate control of the site-specific sensitivity in the range of 47~83 kPa−1 and in the sensing range from 0.1 to 20 kPa was achieved. Moreover, stacked AgNW/PUA/AgNW (APA) structural designed pressure sensors with mixed hole sizes of 10/200 µm and spacer thickness of 800 µm exhibited high sensitivity (~171.5 kPa−1) in the pressure sensing range of 0~20 kPa, fast response (100~110 ms), and high stretchability (40%). From the results, we envision that the effective structural-tuning strategy capable of controlling the sensing properties of the APA pressure sensor would be employed in a large-area stretchable pressure sensor system, which needs site-specific sensing properties, providing monolithic implementation by simply arranging appropriate micro-patterned hole architectures.


2019 ◽  
Vol 7 (4) ◽  
pp. 1022-1027 ◽  
Author(s):  
Tongkuai Li ◽  
Longlong Chen ◽  
Xiang Yang ◽  
Xin Chen ◽  
Zhihan Zhang ◽  
...  

High-performance pressure sensors have attracted considerable attention recently due to their promising applications in touch displays, wearable electronics, human–machine interfaces, and real-time physiological signal perception.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 496 ◽  
Author(s):  
Xi Zhou ◽  
Yongna Zhang ◽  
Jun Yang ◽  
Jialu Li ◽  
Shi Luo ◽  
...  

Wearable pressure sensors have attracted widespread attention in recent years because of their great potential in human healthcare applications such as physiological signals monitoring. A desirable pressure sensor should possess the advantages of high sensitivity, a simple manufacturing process, and good stability. Here, we present a highly sensitive, simply fabricated wearable resistive pressure sensor based on three-dimensional microstructured carbon nanowalls (CNWs) embedded in a polydimethylsiloxane (PDMS) substrate. The method of using unpolished silicon wafers as templates provides an easy approach to fabricate the irregular microstructure of CNWs/PDMS electrodes, which plays a significant role in increasing the sensitivity and stability of resistive pressure sensors. The sensitivity of the CNWs/PDMS pressure sensor with irregular microstructures is as high as 6.64 kPa−1 in the low-pressure regime, and remains fairly high (0.15 kPa−1) in the high-pressure regime (~10 kPa). Both the relatively short response time of ~30 ms and good reproducibility over 1000 cycles of pressure loading and unloading tests illustrate the high performance of the proposed device. Our pressure sensor exhibits a superior minimal limit of detection of 0.6 Pa, which shows promising potential in detecting human physiological signals such as heart rate. Moreover, it can be turned into an 8 × 8 pixels array to map spatial pressure distribution and realize array sensing imaging.


Sign in / Sign up

Export Citation Format

Share Document