scholarly journals Effects of Crosslinking and Silicone Coupling Agent on Properties of EVA Composite Hot Melt Adhesive

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4101
Author(s):  
Zijin Wu ◽  
Yonggang Shangguan ◽  
Chunhui Zhang ◽  
Qiang Zheng

In order to improve the bonding performance, EVA composite hot melt adhesives were prepared by introducing crosslinking agent and silane coupling agent in this paper. A binary EVA resin blend as the base resin with appropriate viscosity and tensile shear strength was selected as hot melt adhesive. The effects of crosslinking agent and silane coupling agent on the properties of ethylene/vinyl acetate (EVA) composite hot melt adhesive were studied. By investigating the preparation and curing conditions of hot melt adhesive and the properties of hot melt adhesive after the introduction of dicumyl peroxide (DCP), the optimum temperature and dosage of DCP and its influence on the properties were determined. It was found that the tensile shear strength of hot melt adhesive increased from 0.247 MPa to 0.726 MPa when 2 phr DCP and 5 phr KH570 were added at the same time. The tensile strength and tensile shear strength of hot melt adhesive are only slightly improved when silicone coupling agents with different functional groups are added to EVA composite hot melt adhesive. However, it was found that excessive silane coupling agent would significantly reduce the tensile strength and shear peel strength of the material.

2014 ◽  
Vol 897 ◽  
pp. 99-102
Author(s):  
Jan Vanerek ◽  
Anna Benešová ◽  
Petr Klímek

The paper deals with the evaluation of epoxy adhesive modification by silane coupling agent used for gluing process of spruce wood. Moreover, the usage of primer containing the silane coupling agent was performed to find out, whether better compatibility between spruce wood and epoxy adhesive at the interface bondline can ensure sufficient resistance to delamination process. As the main criterion, tensile shear strength properties of glued specimens in different thermal and moisture exposures were carried out.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5292 ◽  
Author(s):  
Yuki Shirosaki ◽  
Toshinobu Okabayashi ◽  
Saki Yasutomi

Chitosan microfibers are widely used in medical applications because they have favorable inherent properties. However, their mechanical properties require further improvement. In the present study, a trimethoxysilane aldehyde (TMSA) crosslinking agent was added to chitosan microfibers to improve their tensile strength. The chitosan microfibers were prepared using a coagulation method. The tensile strength of the chitosan microfibers was improved by crosslinking them with TMSA, even when only a small amount was used (less than 1%). TMSA did not change the orientation of the chitosan molecules. Furthermore, aldehyde derived from TMSA did not remain, and siloxane units were formed in the microfibers.


RSC Advances ◽  
2017 ◽  
Vol 7 (7) ◽  
pp. 4024-4029 ◽  
Author(s):  
Jianfei Zhou ◽  
Teng Xu ◽  
Xiaoling Wang ◽  
Chang Liu ◽  
Xuepin Liao ◽  
...  

A low-cost and water resistant biomass adhesive was prepared by using collagen hydrolysate extracted from leather wastes as the starting material and silane coupling agent as the crosslinking agent.


2010 ◽  
Vol 154-155 ◽  
pp. 325-328
Author(s):  
Hai Jun Yang ◽  
Yan Song Zhang ◽  
Jie Shen ◽  
Xin Min Lai

It has been proved that the initial gap has obvious influence on nugget formation, but little works focused on the effect of initial gap on the tensile strength of resistance spot welded (RSW) joints. In this paper, a 3D FE model was built for solving this question. The results show that, even though there are some fluctuations of weld diameter and tensile strength of RSW joints with initial gap, the tensile strength and weld diameter of welded joints with initial gap are still larger than that of welded joints without gap, which confirm that the influence of initial gap on tensile shear strength is little significant. The computation results agree well with experiment.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 947 ◽  
Author(s):  
Min Wu ◽  
Xuetong Tong ◽  
Hui Wang ◽  
Lin Hua ◽  
Yizhe Chen

Adhesive bonding is widely used in the joining of metals and carbon fiber-reinforced plastics (CFRPs). Ultrasonic vibration was used to improve adhesive bonding of CFRP/Al alloy joints grafted with silane coupling agent, and the effect of the ultrasound on the bonding was studied. The surface of Al alloy was treated with a silane coupling agent, and then the ultrasonic vibration was applied on the adherend during the adhesive bonding process. The shear strength was tested, and the mechanism was analyzed by scanning electron microscope (SEM) and Fourier transform infrared spectrometer (FTIR). It is found that the ultrasonic assisting can further promote the bonding of the Al alloy and the adhesive. For the test joins, the shear strength was increased by 267.50% using the silanization treatment plus the ultrasonic assisting. The ultrasonic assisting promoted the grafted epoxy group to react with the adhesive more sufficiently at the Al/adhesive interface by causing micro-mixing and intensified molecule collision, and thus more chemical bond was formed. Under the ultrasonic action, the interface and the adhesive layer became tighter owing to the impact contact at the interface and the oscillating flow in the adhesive layer. The ultrasonic vibration assisting increased the bonding strength by promoting the chemical bond and improving physical morphology.


Sign in / Sign up

Export Citation Format

Share Document