scholarly journals Tensile shear strength and cross tensile strength in welding using an ultrasonic complex vibration source

2022 ◽  
Vol 43 (1) ◽  
pp. 1-9
Author(s):  
Haruki Sakuma ◽  
Takuya Asami ◽  
Hikaru Miura
2010 ◽  
Vol 154-155 ◽  
pp. 325-328
Author(s):  
Hai Jun Yang ◽  
Yan Song Zhang ◽  
Jie Shen ◽  
Xin Min Lai

It has been proved that the initial gap has obvious influence on nugget formation, but little works focused on the effect of initial gap on the tensile strength of resistance spot welded (RSW) joints. In this paper, a 3D FE model was built for solving this question. The results show that, even though there are some fluctuations of weld diameter and tensile strength of RSW joints with initial gap, the tensile strength and weld diameter of welded joints with initial gap are still larger than that of welded joints without gap, which confirm that the influence of initial gap on tensile shear strength is little significant. The computation results agree well with experiment.


2014 ◽  
Vol 353 ◽  
pp. 8-12
Author(s):  
Young Nam Ahn ◽  
Min Jung Kang ◽  
Cheol Hee Kim

Laser weldability was investigated for advanced high-strength steel sheets for automotive applications. Dual-phase steel (DP780) and martensitic steel (MS1300) sheets were employed as base materials; laser-butt and overlap welding experiments were conducted on combinations of steels with similar and dissimilar strength. The tensile strength and metallurgical morphology were analysed for the butt-welded specimens; tensile-shear strength and bead shapes were analysed for the overlap-welded specimens. Even with laser welding, martensite in the heat-affected zone disintegrated and resulted in a softened, heat-affected zone as compared with the base materials. The tensile strength of a butt weldment was determined by the strength of the heat-affected zone. The tensile-shear strength of an overlap weldment was determined by not only the strength of the heat-affected zone but also bead shapes such as blow holes, underfill, and the bead width at the faying surface.


2012 ◽  
Vol 579 ◽  
pp. 109-117 ◽  
Author(s):  
Yuan Ching Lin ◽  
Ju Jen Liu ◽  
Ben Yuan Lin

The effects of tool geometry on the microstructure and tensile shear strength of friction stir spot-welded A6061-T6 Al alloy sheets were investigated in the present study. Friction stir spot welding (FSSW) was carried out at a tool speed of 2500 rpm, plunging rate of 1 mm/s, and dwell time of 3 s. Four types of tools with the same shoulder shape and size, but different pin profiles (threaded cylindrical, smooth cylindrical, threaded triangular, and smooth triangular) were used to carry out FSSW. The mechanical and metallurgical properties of the FSSW specimens were characterized to evaluate the performance of the different tools. Experimental results show that the pin profile significantly alters the hook geometry, which in turn affects the tensile shear strength of the friction stir spot welds. The welds made using the conventional thread cylindrical tool have the largest elongation and yield the highest tensile strength (4.78 kN). The welds made using the smooth cylindrical tool have the lowest tensile strength. The welds made using the threaded triangular and smooth triangular tools both have a tensile-shear load of about 4 KN; however, the welds made using the threaded triangular tool have a better elongation than those made using the smooth triangular tool.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4101
Author(s):  
Zijin Wu ◽  
Yonggang Shangguan ◽  
Chunhui Zhang ◽  
Qiang Zheng

In order to improve the bonding performance, EVA composite hot melt adhesives were prepared by introducing crosslinking agent and silane coupling agent in this paper. A binary EVA resin blend as the base resin with appropriate viscosity and tensile shear strength was selected as hot melt adhesive. The effects of crosslinking agent and silane coupling agent on the properties of ethylene/vinyl acetate (EVA) composite hot melt adhesive were studied. By investigating the preparation and curing conditions of hot melt adhesive and the properties of hot melt adhesive after the introduction of dicumyl peroxide (DCP), the optimum temperature and dosage of DCP and its influence on the properties were determined. It was found that the tensile shear strength of hot melt adhesive increased from 0.247 MPa to 0.726 MPa when 2 phr DCP and 5 phr KH570 were added at the same time. The tensile strength and tensile shear strength of hot melt adhesive are only slightly improved when silicone coupling agents with different functional groups are added to EVA composite hot melt adhesive. However, it was found that excessive silane coupling agent would significantly reduce the tensile strength and shear peel strength of the material.


2021 ◽  
Vol 2 (1) ◽  
pp. 110-120
Author(s):  
Maisa Abdelmoula ◽  
Hajer Ben Hlima ◽  
Frédéric Michalet ◽  
Gérard Bourduche ◽  
Jean-Yves Chavant ◽  
...  

Commercial adhesives present a high bond strength and water resistance, but they are considered non-healthier products. Chitosan can be considered as an interesting biosourced and biodegradable alternative, despite its low water resistance. Here, its wood bonding implementation and its tensile shear strength in dry and wet conditions were investigated depending on its structural characteristics. Firstly, the spread rate, open assembly time, drying pressure, drying temperature, and drying time have been determined for two chitosans of European pine double lap specimens. An adhesive solution spread rate of 1000 g·m−2, an open assembly time of 10 min, and a pressure temperature of 55 °C for 105 min led to a bond strength of 2.82 MPa. Secondly, a comparison between a high molecular weight/low deacetylation degree chitosan and a lower molecular weight/higher deacetylation degree chitosan was conducted. Tests were conducted with beech simple lap specimens in accordance with the implementation conditions and the conditioning treatments in wet and dry environments required for thermoplastic wood adhesive standards used in non-structural applications (EN 204 and EN 205). The results clearly revealed the dependence of adhesive properties and water resistance on the structural features of chitosans (molecular weight and deacetylation degree), explaining the heterogeneity of results published notably in this field.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1077 ◽  
Author(s):  
Seungmin Shin ◽  
Sehun Rhee

In this study, lap joint experiments were conducted using galvanized high-strength steel, SGAFH 590 FB 2.3 mmt, which was applied to automotive chassis components in the gas metal arc welding (GMAW) process. Zinc residues were confirmed using a semi-quantitative energy dispersive X-ray spectroscopy (EDS) analysis of the porosity in the weld. In addition, a tensile shear test was performed to evaluate the weldability. Furthermore, the effect of porosity defects, such as blowholes and pits generated in the weld, on the tensile shear strength was experimentally verified by comparing the porosity at the weld section of the tensile test specimen with that measured through radiographic testing.


Author(s):  
Abozar Barimani-Varandi ◽  
Abdolhossein Jalali Aghchai

The present work studied the enhancement of the tensile shear strength for joining AA6061-T6 aluminium to galvanized DP590 steel via electrically-assisted mechanical clinching (EAMC) using an integrated 2D FE model. To defeat the difficulties of joining low-ductility aluminium alloy to high-strength steel, the electroplastic effect obtained from the electrically-assisted process was applied to enhance the clinch-ability. For this purpose, the results of experiments performed by the chamfering punches with and without electrically-assisted pre-heating were compared. Joint cross-section, failure load, failure mode, fracture displacement, material flow, and failure mechanism were assessed in order to study the failure behaviour. The results showed that the joints clinched at the EAMC condition failed with the dominant dimpled mechanism observed on the fracture surface of AA6061 side, achieved from the athermal effect of the electroplasticity. Besides, these joints were strengthened 32% with a much more fracture displacement around 20% compared with non-electrically-assisted pre-heating.


Sign in / Sign up

Export Citation Format

Share Document