scholarly journals Toughening Mechanism Analysis of Recycled Rubber-Based Composites Reinforced with Glass Bubbles, Glass Fibers and Alumina Fibers

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4215
Author(s):  
Gamze Cakir Kabakci ◽  
Ozgur Aslan ◽  
Emin Bayraktar

Recycling of materials attracts considerable attention around the world due to environmental and economic concerns. Recycled rubber is one of the most commonly used recyclable materials in a number of industries, including automotive and aeronautic because of their low weight and cost efficiency. In this research, devulcanized recycled rubber-based composites are designed with glass bubble microsphere, short glass fiber, aluminum chip and fine gamma alumina fiber (γ-Al2O3) reinforcements. After the determination of the reinforcements with matrix, bending strength and fracture characteristics of the composite are investigated by three-point bending (3PB) tests. Halpin–Tsai homogenization model is adapted to the rubber-based composites to estimate the moduli of the composites. Furthermore, the relevant toughening mechanisms for the most suitable reinforcements are analyzed and stress intensity factor, KIc and critical energy release rate, GIc in mode I are determined by 3PB test with single edge notch specimens. In addition, 3PB tests are simulated by finite element analysis and the results are compared with the experimental results. Microstructural and fracture surfaces analysis are carried out by means of scanning electron microscopy (SEM). Mechanical test results show that the reinforcement with glass bubbles, aluminum oxide ceramic fibers and aluminum chips generally increase the fracture toughness of the composites.

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2552 ◽  
Author(s):  
Uwe Gohs ◽  
Michael Mueller ◽  
Carsten Zschech ◽  
Serge Zhandarov

Continuous glass fiber-reinforced polypropylene composites produced by using hybrid yarns show reduced fiber-to-matrix adhesion in comparison to their thermosetting counterparts. Their consolidation involves no curing, and the chemical reactions are limited to the glass fiber surface, the silane coupling agent, and the maleic anhydride-grafted polypropylene. This paper investigates the impact of electron beam crosslinkable toughened polypropylene, alkylene-functionalized single glass fibers, and electron-induced grafting and crosslinking on the local interfacial shear strength and critical energy release rate in single glass fiber polypropylene model microcomposites. A systematic comparison of non-, amino-, alkyl-, and alkylene-functionalized single fibers in virgin, crosslinkable toughened and electron beam crosslinked toughened polypropylene was done in order to study their influence on the local interfacial strength parameters. In comparison to amino-functionalized single glass fibers in polypropylene/maleic anhydride-grafted polypropylene, an enhanced local interfacial shear strength (+20%) and critical energy release rate (+80%) were observed for alkylene-functionalized single glass fibers in electron beam crosslinked toughened polypropylene.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 448 ◽  
Author(s):  
Alaeddin Burak Irez ◽  
Emin Bayraktar ◽  
Ibrahim Miskioglu

This study proposes a new design of lightweight and cost-efficient composite materials for the aeronautic industry utilizing recycled fresh scrap rubber, epoxy resin, and graphene nanoplatelets (GnPs). After manufacturing the composites, their bending strength and fracture characteristics were investigated by three-point bending (3PB) tests. Halpin–Tsai homogenization adapted to composites containing GnPs was used to estimate the moduli of the composites, and satisfactory agreement with the 3PB test results was observed. In addition, 3PB tests were simulated by finite element method incorporating the Halpin–Tsai homogenization, and the resulting stress–strain curves were compared with the experimental results. Mechanical test results showed that the reinforcement with GnPs generally increased the modulus of elasticity as well as the fracture toughness of these novel composites. Toughening mechanisms were evaluated by SEM fractography. The typical toughening mechanisms observed were crack deflection and cavity formation. Considering the advantageous effects of GnPs on these novel composites and cost efficiency gained by the use of recycled rubber, these composites have the potential to be used to manufacture various components in the automotive and aeronautic industries as well as smart building materials in civil engineering applications.


2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


2013 ◽  
Vol 859 ◽  
pp. 143-148
Author(s):  
Yang Xu ◽  
Ding Ling Li ◽  
Li Peng ◽  
Yan Xiao ◽  
Yi Hua Nie

The finite element analysis model was built as the real scale for mortar arch framework slope protection, and the displacement and strain at different points were collected by vertical loading pressure. So the mechanical mechanism can be studied, and the analysis was done between calculation results and testing results of solid miniature model. The studying results show that the point on the arch foot is the worst stress place for each arch, and the total displacement increase nonlinear as the distance from the slope top increases, and the bump phenomenon exists in the bottom of slope, the points are likely to be broken.


2007 ◽  
Vol 280-283 ◽  
pp. 1185-1186
Author(s):  
Ji Yong Pan ◽  
Jiang Hong Gong

Aluminium titanate (Al2TiO5) is an excellent oxide ceramic material with a very low thermal expand coefficient. Aiming at improving the bending strength Al2TiO5, spodumene was used as additives for preparing Al2TiO5 and the effect of adding spodumene on the mechanical properties of Al2TiO5 was investigated in this paper. It was found that adding spodumene, instead of simple oxides, may significantly enhance the bending strength of Al2TiO5.


2021 ◽  
Author(s):  
Chao Chen ◽  
Qingong Zhu ◽  
Huanping Wang ◽  
Feifei Huang ◽  
Qinghua Yang ◽  
...  

Abstract As is well known, silicate glass has a stable glass-forming region and mature drawing processes into fibers. In this study, to obtain enhanced mechanical properties, glasses with a composition of SiO2-Al2O3-MgO-CaO-B2O3-Fe2O3 were synthesized using TiO2 and CeO2. When the amount of TiO2 and CeO2 is less than 2 wt%, the mechanical properties increase with increases in the TiO2 and CeO2. However, as the amount of TiO2 and CeO2 increases from 2 to 3.5 wt%, the mechanical properties decrease. Co-doping with 1 wt% TiO2 and 1 wt% CeO2 was found to be the optimum approach, with a density, bending strength, compression strength, and compression modulus of 2.626 g/cm3, 108.36 MPa, 240.18 MPa, and 115.03 GPa, respectively. The optical band gap and Raman spectroscopy proved that, as long as the content of oxygen bonds reaches the maximum level, a kind of best structural stability and mechanical properties will be achieved. Hence, this type of high-strength silicate glass can be used in optical fibers for military defense, wind power generation, and transportation.


2009 ◽  
pp. 155-163 ◽  
Author(s):  
Slavisa Putic ◽  
Marina Stamenovic ◽  
Branislav Bajceta ◽  
Dragana Vitkovic

Polymer composite pipes with glass fiber reinforcement have today a wide usage in the chemical and process industries. The basic subject of this paper is the determination and distribution of stresses and strains in longitudinal and circumferentional directions of glass-polyester pipes under tension test. Also, the tension strengths in both directions are determined out. Tension test was performed on an electro-mechanical test machine on flat samples and rings obtained by cutting of pipes produced by the method 'Filament winding' with glass fibers reinforcement ?55?. Also, the micromechanical analysis on fracture surfaces was done by SEM, which provided the knowledge about models and mechanisms of fracture on applyed loading.


2015 ◽  
Vol 817 ◽  
pp. 96-103
Author(s):  
Wei Ping Fang ◽  
Yao Yong Yi ◽  
Feng Mei Liu ◽  
Zheng Lin Liu ◽  
Zhen Hua Deng

A silver free amorphous Cu-35Ti-12Ni active brazing alloy was successfully prepared in this work. The crystallinity, microstructure, and chemical composition were characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive spectrometry (EDS), respectively. A typical characteristic peak of amorphous material was observed in the XRD pattern. The microstructures and chemical compositions of the silver free amorphous alloy were uniform. Differential scanning calorimetry (DSC) result shows that the amorphous silver free brazing alloy has higher melting temperature than commercial silver brazing alloy (Ag-26.5Cu-1.5Ti). Wetting contact angle and spreading area on Si3N4 ceramic substrate were used to evaluate the wetting ability of brazing alloy. The wetting angle was smaller than 5o, and the spreading area was 141.6 mm2 at 1100°C. The bending strength of silver free brazing alloy/Si3N4 was also carried out. The mechanical test shows that the amorphous Cu-35Ti-12Ni/Si3N4 has higher joint strength (304.7MPa) than the crystal Cu-35Ti-12Ni/Si3N4 (294.7MPa) at room temperature.


Sign in / Sign up

Export Citation Format

Share Document