Improving the Strength of Al2TiO5 by Adding Spodumene

2007 ◽  
Vol 280-283 ◽  
pp. 1185-1186
Author(s):  
Ji Yong Pan ◽  
Jiang Hong Gong

Aluminium titanate (Al2TiO5) is an excellent oxide ceramic material with a very low thermal expand coefficient. Aiming at improving the bending strength Al2TiO5, spodumene was used as additives for preparing Al2TiO5 and the effect of adding spodumene on the mechanical properties of Al2TiO5 was investigated in this paper. It was found that adding spodumene, instead of simple oxides, may significantly enhance the bending strength of Al2TiO5.

2015 ◽  
Vol 10 (2) ◽  
pp. 213-217 ◽  
Author(s):  
N. C. de Araújo ◽  
A. P. Ramos ◽  
A. J. P. Queiroz ◽  
R. C. dos Santos ◽  
J. Da S. Buriti

A vantagem do processo de fabricação de tijolos com manipueira é ser ecologicamente correto, pois não consome água, nem há necessidade de ir ao forno, economizando recursos naturais e fazendo uso de um efluente altamente poluente. Assim, este trabalho objetivou analisar as propriedades mecânicas de tijolos fabricados com solo associado à manipueira como alternativa sustentável. Foram avaliados os parâmetros absorção de água e resistência à flexão. Em conformidade com os resultados, observou-se que as massas cerâmicas apresentaram valores de absorção de água da ordem de 10 a 13 %, valores aceitáveis para fabricação de blocos cerâmicos e valores de resistência a flexão adequados para fabricação de tijolos maciços, tanto, os corpos de prova com queima quanto os corpos de provas sem queima. Assim, conclui-se que a troca da água pela adição da manipueira na massa cerâmica não interfere nas propriedades mecânicas e esta pode ser adicionada a massa cerâmica para fabricação de tijolos ecológicos através do processo de prensagem.Mechanical properties of manufactured bricks with soil and cassava wastewaterAbstract: The advantage of the manufacturing process of brick with cassava is being environmentally friendly because it does not consume water, and there is no need to go to the oven, saving natural resources and making use of a highly polluting effluent. This work aimed to analyze the mechanical properties of bricks made from soil associated with cassava as a sustainable alternative. Parameters were evaluated water absorption and flexural strength. In accordance with the results, it was observed that the ceramic material provided water absorption values of the order of 10 to 13%, acceptable values for manufacturing ceramic blocks and bending strength values suitable for manufacture of solid bricks, both proof bodies test with burns as the proof bodies of evidence without burning. It is therefore concluded that the replacement of water by the addition of cassava the ceramic mass does not interfere with the mechanical properties and that can be added to the ceramic paste for manufacturing green bricks through the pressing process.


2020 ◽  
pp. 39-48
Author(s):  
B. O. Bolshakov ◽  
◽  
R. F. Galiakbarov ◽  
A. M. Smyslov ◽  
◽  
...  

The results of the research of structure and properties of a composite compact from 13 Cr – 2 Мо and BN powders depending on the concentration of boron nitride are provided. It is shown that adding boron nitride in an amount of more than 2% by weight of the charge mixture leads to the formation of extended grain boundary porosity and finely dispersed BN layers in the structure, which provides a high level of wearing properties of the material. The effect of boron nitride concentration on physical and mechanical properties is determined. It was found that the introduction of a small amount of BN (up to 2 % by weight) into the compacts leads to an increase in plasticity, bending strength, and toughness by reducing the friction forces between the metal powder particles during pressing and a more complete grain boundary diffusion process during sintering. The formation of a regulated structure-phase composition of powder compacts of 13 Cr – 2 Mо – BN when the content of boron nitride changes in them allows us to provide the specified physical and mechanical properties in a wide range. The obtained results of studies of the physical and mechanical characteristics of the developed material allow us to reasonably choose the necessary composition of the powder compact for sealing structures of the flow part of steam turbines, depending on their operating conditions.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 220
Author(s):  
Petar Antov ◽  
Viktor Savov ◽  
Ľuboš Krišťák ◽  
Roman Réh ◽  
George I. Mantanis

The potential of producing eco-friendly, formaldehyde-free, high-density fiberboard (HDF) panels from hardwood fibers bonded with urea-formaldehyde (UF) resin and a novel ammonium lignosulfonate (ALS) is investigated in this paper. HDF panels were fabricated in the laboratory by applying a very low UF gluing factor (3%) and ALS content varying from 6% to 10% (based on the dry fibers). The physical and mechanical properties of the fiberboards, such as water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), internal bond strength (IB), as well as formaldehyde content, were determined in accordance with the corresponding European standards. Overall, the HDF panels exhibited very satisfactory physical and mechanical properties, fully complying with the standard requirements of HDF for use in load-bearing applications in humid conditions. Markedly, the formaldehyde content of the laboratory fabricated panels was extremely low, ranging between 0.7–1.0 mg/100 g, which is, in fact, equivalent to the formaldehyde release of natural wood.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.


Author(s):  
Adrian Circiumaru ◽  
Vasile Bria ◽  
Iulian-Gabriel Birsan ◽  
Gabriel Andrei ◽  
Dumitru Dima

The multi-component composites could represent the cheapest solution when controllable properties are required. In order to establish the right amount of filler it is necessary to analyze not only the electro-magnetic and mechanical properties but also, the thermal ones. The filler presence in the matrix produces discontinuities at the fibre-matrix interface with consequences regarding mechanical properties. Using a single filler it is possible to improve one or two properties electrical and thermal conductivity for instance and mean time to induce a decrease of other properties as bending strength, shock resistance etc. Using polymer layers with relatively high electrical conductivity as external layers of laminate and magnetic particles filled polymer as core layers. An electric circuit might be, at the same time, the reinforcement of a composite leading to lighter structures and, based on carbon fiber’s properties might transmit information about the material’s loading, temperature or integrity. Fabric reinforced or textile composites are used in aerospace, automotive, naval and other applications. They are convenient material forms providing adequate stiffness and strength in many structures. The microstructure of composite reinforced with woven, braided, or stitched networks is significantly different from that of tape based laminates. The properties of the composite depend not only on the properties of the components but on quality and nature of the interface between the components and its properties. Reinforced composites with filled epoxy matrix were formed using a hybrid technique consisting in layer-by-layer adding of reinforcement sheets into a glass mould. Various distributions of reinforcement sheets and filled polymer layers were realized in order to point out the ways in which the final properties might be controlled. Mechanical properties were analyzed.


2008 ◽  
Vol 591-593 ◽  
pp. 271-276 ◽  
Author(s):  
M.A. Martinez ◽  
R. Calabrés ◽  
J. Abenojar ◽  
Francisco Velasco

In this work, ultrahigh carbon steels (UHCS) obtained by powder metallurgy with CIP and argon sintered at 1150°C. Then, they were rolled at 850 °C with a reduction of 40 %. Finally, steels were quenched at 850 and 1000 °C in oil. In each step, hardness, bending strength and wear performance were evaluated. Obtained results are justified with a metallographic study by SEM. Both mechanical properties and wear resistance are highly favoured with the thermomechanical treatment that removes the porosity of the material. Moreover, final quenching highly hardens the material. The obtained material could be used as matrix for tool steels.


2014 ◽  
Vol 602-603 ◽  
pp. 438-442
Author(s):  
Lei Yu ◽  
Jian Yang ◽  
Tai Qiu

Fully dense (ZrB2+ZrC)/Zr3[Al (Si)]4C6 composites with ZrB2 content varying from 0 to 15 vol.% and fixed ZrC content of 10 vol.% were successfully prepared by in situ hot-pressing in Ar atmosphere using ZrH2, Al, Si, C and B4C as raw materials. With the increase of ZrB2 content, both the bending strength and fracture toughness of the composites increase and then decrease. The synergistic action of ZrB2 and ZrC as reinforcements shows significant strengthening and toughing effect to the Zr3[Al (Si)]4C6 matrix. The composite with 10 vol.% ZrB2 shows the optimal mechanical properties: 516 MPa for bending strength and 6.52 MPa·m1/2 for fracture toughness. With the increase of ZrB2 content, the Vickers hardness of the composites shows a near-linear increase from 15.3 GPa to 16.7 GPa. The strengthening and toughening effect can be ascribed to the unique mechanical properties of ZrB2 and ZrC reinforcements, the differences in coefficient of thermal expansion and modulus between them and Zr3[Al (Si)]4C6 matrix, fine grain strengthening and uniform microstructure derived by the in situ synthesis reaction.


2005 ◽  
Vol 297-300 ◽  
pp. 875-880
Author(s):  
Cheol Ho Lim ◽  
Ki Tae Kim ◽  
Yong Hwan Kim ◽  
Dong Choul Cho ◽  
Young Sup Lee ◽  
...  

P-type Bi0.5Sb1.5Te3 compounds doped with 3wt% Te were fabricated by spark plasma sintering and their mechanical and thermoelectric properties were investigated. The sintered compounds with the bending strength of more than 50MPa and the figure-of-merit 2.9×10-3/K were obtained by controlling the mixing ratio of large powders (PL) and small powders (PS). Compared with the conventionally prepared single crystal thermoelectric materials, the bending strength was increased up to more than three times and the figure-of-merit Z was similar those of single crystals. It is expected that the mechanical properties could be improved by using hybrid powders without degradation of thermoelectric properties.


2010 ◽  
Vol 154-155 ◽  
pp. 1356-1360 ◽  
Author(s):  
Ming Dong Yi ◽  
Chong Hai Xu ◽  
Jing Jie Zhang ◽  
Zhen Yu Jiang

A new ZrO2 nano-composite ceramic tool and die material was prepared with vacuum hot pressing technique. The effects of sintering parameters on the nano-composite ceramic tool and die materials were studied. The results indicated that the mechanical properties of ZrO2 nano-composite ceramic tool and die material with the additions of TiB2 and Al2O3 are higher than that of the pure ZrO2 ceramic material. Sintering at 1100 for 120min could improve the density and mechanical properties of ZrO2 nano-composite ceramic material. The flexural strength, fracture toughness and hardness with the optimum sintering parameters can reach 878MPa, 9.54MPa•m1/2 and 13.48GPa, respectively, obviously higher than that with non-optimum sintering parameters.


2013 ◽  
Vol 589-590 ◽  
pp. 590-593 ◽  
Author(s):  
Min Wang ◽  
Jun Zhao

In order to investigate the effects of TiN content on Al2O3/TiN ceramic material (ATN), the ATN ceramic materials were prepared of TiN content in 30%, 40%, 50%, 60% in the condition of hot press sintering. The sintering temperature is 1700°C, the sintering press is 32MPa, and the holding time are 5min, 10min, 15min. The effects of TiN content on mechanical properties and microstructure of ATN ceramic materials were investigated by analyzing the bending strength, hardness, fracture toughness. The results show that ATN50 has the best mechanical property, its bending strength is 659.41MPa, vickers hardness is 13.79GPa, fracture toughness is 7.06MPa·m1/2. It is indicated that the TiN content has important effect on microstructure and mechanical properties of ATN ceramic materials.


Sign in / Sign up

Export Citation Format

Share Document